
The Quest to Build Trust Earlier in Digital Design
Benjamin Tan

Department of Electrical and Software Engineering
University of Calgary

Calgary, Alberta, Canada
benjamin.tan1@ucalgary.ca

Abstract—The ever-rising complexity of computer systems
presents challenges for maintaining security and trust throughout
their lifetime. As hardware forms the foundation of a secure
system, we need tools and techniques that support computer
hardware engineers to improve trust and help them address
security concerns. This paper highlights a vision for tools and
techniques to enhance the security of digital hardware in earlier
stages of the digital design process, especially during design
with hardware description languages. We discuss the challenges
that design teams face and explore some recent literature on
understanding, identifying, and mitigating hardware security
weaknesses as early as possible. We highlight the opportunities
that emerge with open-source hardware development and sketch
some open questions that guide ongoing research in this domain.

I. INTRODUCTION

Designing computer systems is challenging. Not only do
designers have to work hard to satisfy functional requirements
(often under considerable time pressure), but increasing device
interconnectivity and desire for computers in sensitive applica-
tions introduce security requirements into the fold. Naturally,
we want to identify potential shortcomings in security in
earlier stages of digital design, thus building trust in our
overall system. Building trust earlier in design by identify-
ing and addressing potential weaknesses is also beneficial
because as we progress through the design process, the cost
of design changes considerably increases. As best practice,
designers should consider adopting a security development
lifecycle (SDL) (e.g., [1]) where a security mindset is adopted
throughout the design process. Teams need to define security
objectives, formulate meaningful threat models, implement,
and then verify and validate security mechanisms. Careful
thought about support over the lifespan of a released product
in the field is needed.

However, while software designers have at their disposal
many potential tools to help with security throughout the
design flow (e.g., [2]), hardware designers do not yet have such
luxury [3]–[5]. In fact, systemization of how we think about
security weaknesses is emerging and evolving, with recent
efforts like the introduction of the hardware Common Weak-
ness Enumerations (CWEs) [6] and standardization efforts

The research program that this work describes is supported in part by
the Natural Sciences and Engineering Research Council of Canada (NSERC)
[RGPIN-2022-03027]. Cette recherche a été financée en partie par le Conseil
de recherches en sciences naturelles et en génie du Canada (CRSNG). The
research is also supported in part by Alberta Innovates and the University of
Calgary, and by a gift from Intel Corporation. This work does not in any way
constitute an Intel endorsement of a product or supplier.

like Accellera’s Security Annotation for Electronic Design
Integration Standard (SA-EDI) [7] and IEEE’s P3164 working
group [8] revealing industry-led efforts to tackle security
issues. Recent competitions like Hack@DAC [4], [9] seek to
raise awareness and engagement with security bugs.

Even so, there remains a gap between the accessibility of
(hardware) cybersecurity expertise and the need for secure
design. As hardware forms the foundation of a secure sys-
tem, we need tools and techniques that support computer
hardware engineers to improve trust and help them address
security concerns. How do we choose what security fea-
tures to implement? How do we check our designs, even if
designs are not yet complete? How do we build trust, even if
designers are not security experts? Such questions are not
easily solved.

Towards the goal of building trust in digital systems, this
paper highlights a vision for tools and techniques to enhance
the security of digital hardware in earlier stages of the digital
design process and some of the progress our team has made
in this quest for improving security. We discuss the challenges
that design teams face and explore some recent literature on
understanding, identifying, and mitigating hardware security
weaknesses as early as possible. With the emphatic growth in
open-source hardware design, there is an opportunity to learn
from and contribute to open-source ecosystems in pushing our
understanding and handling of security challenges.

The rest of this paper is as follows. Section II provides
background on the area of hardware security bugs and the
motivation for wanting tools and techniques to support things
earlier in design. In Section III, we discuss some of our recent
work in the area and highlight some open challenges, and
present some related work in Section IV. Section V concludes.

II. BACKGROUND AND MOTIVATION

Hardware security is a wide and varied field, and our
understanding of risks continues to evolve. There are potential
security issues such as threats in the supply chain (especially
given globalized production [10]), the potential for malicious
modifications [11], or even perhaps unintentional bugs [4].
Others include issues that can manifest physically (e.g., side-
channels [12]). There are many potential solutions for different
security challenges such as new mechanisms [13] and the
domain features back-and-forth developments, likened to “cat-
and-mouse” games for attacks and defenses (e.g., in logic
locking [14]). Naturally, to build trusted systems, we want



RTL
Designers
(Security

Non-Experts)

Extract security-relevant
elements from RTL and

support material

CWE

CWE

Automated checks for
weaknesses

Collateral

RTL

Automated design
enhancement / repairs

Give and receive feedback/guidance from a designer

Continue
design flow

Fig. 1. A vision for tools and techniques to help with building trust in early
stages of design

to choose and combine the “best” security solutions available.
However, what is “best” is determined on a case-by-case basis;
designers might need to favor one design metric over another,
such as keeping area overhead low, maximizing performance,
or improving usability—sometimes at the cost of security.

Given the plethora of options available, security-driven de-
sign remains largely a human-in-the-loop endeavor. Choosing
how best to go about improving trust requires creativity and
value-based judgment. Even the process of deciding what is
important (i.e., identifying assets) is subjective and requires
some level of security expertise and a handle on designer
intent [15]. However, when there are humans involved, there
is the risk of unintentional mistakes – in other words, there
is a potential for bugs, a design defect that might result in
unintended behavior (noting, of course, that designer intent is
often imperfect, incomplete, or implicit [16]). Design bugs
can appear throughout the design lifecycle, ranging from
improperly captured (or even defined) specifications to literal
typographical errors in the code.

How can we effectively find and deal with bugs? This
question motivates the “quest” outlined in this paper. While
one can (and should) think about security throughout the
lifecycle, our team’s work is especially concerned with what is
possible at early stages of design, i.e., during RTL implemen-
tation and earlier. Why? If we find bugs early in design, we can
make lower-cost changes to reduce risk and avoid calamities
should an exploitable vulnerability “escape” in a final product.
Working at RTL and earlier improves the likelihood that we
have at our disposal more markers of designer intent, ranging
from code comments, signal names, specification documents,
and such – we can work with designers to give guidance (and
hopefully improve security awareness) as well as receive guid-
ance (for example, on the validity of an identified weakness).
How early do we envision? As early as possible, potentially
even before we finalize security objectives and threat models
– this entails adaptable and flexible analyses. As of today,
there is no panacea when it comes to identifying security
weaknesses [4], [5]. Fig. 1 illustrates a vision for tools and
techniques that can assist designers in building trust.

Recent efforts like the hardware CWEs [6] provide a
means to categorize and reason over security weaknesses in

a common framework, but how one can use the framework,
e.g., for implementing automated detection tools or informing
designers, remains an open challenge. Another industry-led
effort, the SA-EDI standard [7] (now transitioned to an in-
progress IEEE proposed standard, IEEE P3164), captures the
idea that security is a collective responsibility by aiming for
a standardized format for security-related collateral associated
with an IP – a system integrator can use the information to
make an “informed decision at the time of IP integration”
and lead to actions like “implement[ing] mitigations” or even
deciding that the risks are out of scope” [7]. To the best of our
knowledge, uptake of the standard has been low, perhaps partly
due to the onerousness of populating the fields required (by
hand). Can we automate things? If so, how much automation
should we have? In light of everything discussed so far, some
of the open questions include (and are not limited to):

• Bugs, bugs, bugs: How can we detect different kinds
of security weaknesses and bugs? Are there some types
of bugs that are inherently more (or less) amenable to
certain types of analyses?

• Humans-in-the-loop: How can we maximize human
expertise and intent in building trust? Is there a space
between the extremes of having everything manually
crafted and fully automated? How do we support the
design processes currently used by design teams?

III. RECENT DIRECTIONS

Given our discussion of the motivation for our work, this
section provides an overview of some of the directions we
have been pursuing, emphasizing what we consider to be some
open challenges. We also provide interested readers with a
non-extensive overview of related work.

A. Static Analysis

In pursuing security analysis at earlier design stages, we
looked at static analysis [5]. Static analysis focuses primarily
(if not solely) on source code, thus obviating the need for
other design collateral (such as testbenches and a functioning
simulation environment). In some cases, analyzing incomplete
code is even possible. In that work, we identified five CWEs,
CWE-1234: Hardware Internal or Debug Modes Allow Over-
ride of Locks, CWE-1271: Uninitialized Value on Reset for
Registers with Security Settings, CWE-1245: Improper Finite
State Machines (finite state machines (FSMs)) in Hardware
Logic, CWE-1280: Access Control Check Implemented After
Asset is Accessed and CWE-1262: Improper Access Control
for Register Interface, as amenable to pattern recognition
in a “context-less” fashion. This means that we could craft
scanners to identify potential instances of these weaknesses
without requiring additional context from a designer, such as
specific assets or design intent, as these weaknesses could be
considered “general”.
CWEAT [5] showed that certain CWEs can be detected

during the early RTL Implementation, where we were able to
highlight 180 instances of potential weaknesses, reducing the
search space for manual checking. However, while promising,



several challenges emerged – as with any imperfect detection
system, there is the risk of false positives that can distract,
confuse, or burden a human operator. As such, more work
is needed to reduce the “noise.” We did, however, find that
similar scanning could be used in cases where the RTL code
is more structured, such as that generated through HLS [17].
In investigating the CWEs, we found that several entries are
quite “broad” – given that we only looked at five of (as of
writing) 108 hardware-relevant CWEs, we surmised that the
remaining require much more context. In other words, scanners
need to incorporate design- or project-specific information to
guide the identification of areas of concern. As of now, we
lack robust solutions for context-inclusive scanning.

B. Large Language Models (LLMs)

The recent emergence of large language models (LLMs) has
inspired a flurry of research activity (readers might find the
recent survey [18] useful). Keeping the focus on source code,
we have investigated LLMs for detecting potential security
bugs [19], repairing bugs [20], and assertion generation [21].
In many ways, these works could be considered a type of
“static analysis,” as previously discussed, at least when using
LLMs without “feedback” (such as from a simulation or
formal verification tool).

Our proof-of-concept implementations1 show that there is
the potential for using models to help designers, although
sometimes with numerous requests to the LLMs. We speculate
that their usefulness will increase over time, at least while
new LLM models continue to exhibit increased performance
in general. However, like other LLM-centric solutions, LLM
shortcomings remain, such as hallucination or mixed-quality
in their outputs (such as security [22]). Prompt engineering
and verification/evaluation of LLM outputs are some of the
challenges we continue to face. As of now, we postulate that
the more “interactive” nature of LLMs (e.g., for “chat”) can
provide opportunities to more directly inform designers or
act as an interface for designer guidance. For example, our
recent work investigated using LLMs to explain EDA tool
error messages to novice users [18].

C. Learning from Open Source Processes

With the rise in open-source hardware projects (e.g., Open-
Titan [23]) and heterogeneous SoCs, there is an opportunity to
learn from hardware development. This is especially pertinent
from an academic point of view, given that access to internal
details of commercial designs is understandably unlikely.
Having access to designs written in HDLs is very useful for
experimentation and analysis, and efforts like Hack@DAC
(part of the Hack The Silicon series [9]), TrustHub [24],
CAD4Security [25] and CAD for Assurance [26] have enabled
scores of research, including ours. Even so, the quantity of
open-source hardware remains orders of magnitude less than
software, with datasets of known bugs even more scarce.

What we do have available, however, can be very interest-
ing. In our recent work [27], we have begun to look beyond the

1e.g., https://zenodo.org/records/10416865

RTL code and into the discussions accompanying digital de-
sign, where human developers identify potential bugs, discuss
them, and implement fixes. By looking at behaviors, such as
the nature of identified issues, the magnitude of code changes
between commits, and the levels of discussion, we can start to
build a more holistic view of the development process. When
we manually examined OpenTitan, we found that 53% of the
bugs identified during its development (in the period that we
examined) had potential security implications and that 55% of
all bug fixes changed only a single file. We think that more
consideration of open-source projects can reveal new insights,
and as more projects emerge and activity increases (and we
hope they do), this opportunity will grow.

IV. SELECTED RELATED WORK

Finding hardware security bugs in the design stage at RTL
requires considerable security expertise, especially for manual
analysis [3], [4], [28]. There exist some specialized approaches
that require experts to devise information flow properties for
formal verification and simulation [29]. Security invariants are
mined in [30], and testing approaches like concolic testing
(e.g., [31]) or fuzzing (e.g., [32]) are emerging. There are
a few approaches for security analysis during RTL design,
e.g., the construction and analysis of hyperflow graphs [33],
and progress toward the automation of various security tasks,
such as asset identification [34] and security property re-
use [35]. Notably, few works attempt to deal with security
feedback as you go; the automated verification environment
for HDLs is far less mature compared with the state-of-the-
art for higher-level computer programming (which has several
security-focused static analysis tools—e.g., nearly 100 listed
on OWASP [2]). Several tools provide linting capabilities for
RTL (e.g., [36]), but these do not yet focus on highlighting
security weaknesses. As previously discussed, LLMs provide
opportunities for early-stage security assistance [37], such as
property generation [38].

Related literature deals with hardware Trojans (HTs) detec-
tion [11]; if we consider bugs to be “unintentional” artifacts,
HTs are complementary “intentional” malicious insertions.
There are techniques for HT detection (e.g., [39]–[41]) that
attempt to localize suspicious design parts using heuristics or
ML techniques. While they can serve as a starting point for se-
curity big detection, they do not usually apply to earlier design
stages or propose repair techniques for security weaknesses.
While research into automatic program repair in software
engineering is mature [42], similar efforts for hardware design
lag, but recent work is promising [20], [43], [44].

V. CONCLUSIONS

We gave insights into our vision for tools and techniques
to enhance the security of digital hardware in earlier stages of
the digital design process. We discussed recent literature on
understanding, identifying, and mitigating hardware security
weaknesses as early as possible and outlined some ongoing
challenges and opportunities, especially those that continue to
emerge with open-source hardware development.

https://zenodo.org/records/10416865


REFERENCES

[1] V. Dorsey and C. Morhardt, “Intel Security Development Lifecycle,” In-
tel Corporation, Tech. Rep., 2020. [Online]. Available: https://newsroom.
intel.com/wp-content/uploads/sites/11/2020/10/sdl-2020-whitepaper.pdf

[2] OWASP, “Source Code Analysis Tools | OWASP Foundation.”
[Online]. Available: https://owasp.org/www-community/Source Code
Analysis Tools

[3] M. M. Bidmeshki et al., “Hunting Security Bugs in SoC Designs:
Lessons Learned,” IEEE Design & Test, vol. 38, no. 1, pp. 22–29,
Feb. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/
9154739/

[4] G. Dessouky et al., “HardFails: Insights into Software-Exploitable
hardware bugs,” in USENIX Security Symp. USENIX Association,
Aug. 2019, pp. 213–230. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/dessouky

[5] B. Ahmad et al., “Don’t CWEAT It: Toward CWE Analysis
Techniques in Early Stages of Hardware Design,” in IEEE/ACM
Int. Conf. on CAD, Dec 2022, p. 1–9. [Online]. Available:
https://dl.acm.org/doi/10.1145/3508352.3549369

[6] The MITRE Corporation, “CWE - CWE-1194: Hardware Design
(4.1),” https://cwe.mitre.org/data/definitions/1194.html, 2022. [Online].
Available: https://cwe.mitre.org/data/definitions/1194.html

[7] Accellera Systems Initiative, “Security Annotation for Electronic
Design Integration Standard,” Jul. 2021. [Online]. Avail-
able: https://www.accellera.org/images/downloads/standards/Accellera
SA-EDI Standard v10.pdf

[8] IEEE P3164 Working Group, “P3164 Standard for Security Annotation
for Electronic Design Integration.” [Online]. Available: https://standards.
ieee.org/ieee/3164/11106/

[9] “Home - Hack The Silicon,” 2024. [Online]. Available: https:
//hackthesilicon.com/

[10] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proc. IEEE, vol. 102,
no. 8, pp. 1283–1295, Aug. 2014. [Online]. Available: http:
//ieeexplore.ieee.org/document/6860363/

[11] K. Xiao et al., “Hardware Trojans: Lessons Learned after One Decade
of Research,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 22, no. 1, pp. 6:1–6:23, May 2016. [Online].
Available: http://doi.org/10.1145/2906147

[12] F.-X. Standaert, “Introduction to Side-Channel Attacks,” in Secure
Integrated Circuits and Systems, I. M. Verbauwhede, Ed. Boston,
MA: Springer US, 2010, pp. 27–42. [Online]. Available: https:
//doi.org/10.1007/978-0-387-71829-3 2

[13] B. Tan, “Challenges and Opportunities for Hardware-Assisted Security
Improvements in the Field,” in 2022 23rd Int. Symp. on Quality
Electronic Design (ISQED), Apr. 2022, pp. 90–95, iSSN: 1948-
3295. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9806254

[14] A. Chakraborty et al., “Keynote: A Disquisition on Logic Locking,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., pp. 1–1, 2019.

[15] IEEE P3164 Working Group, “Asset Identification for Electronic Design
IP,” Asset Identification for Electronic Design IP, pp. 1–26, Apr. 2024.
[Online]. Available: https://ieeexplore.ieee.org/document/10496567

[16] D. G. Widder and C. L. Goues, “What is a “bug”? subjectivity,
epistemic power, and implications for software research,” Feb. 2024,
arXiv:2402.08165 [cs]. [Online]. Available: http://arxiv.org/abs/2402.
08165

[17] L. Collini et al., “Using Static Analysis for Enhancing HLS Security,”
IEEE Embedded Systems Letters, pp. 1–1, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10308602/

[18] S. Qiu, B. Tan, and H. Pearce, “Explaining EDA synthesis errors with
LLMs,” Apr. 2024, arXiv:2404.07235 [cs]. Accepted to appear at the
1st IEEE Int. Workshop on LLM-Aided Design (LAD’24). [Online].
Available: http://arxiv.org/abs/2404.07235

[19] B. Ahmad et al., “FLAG: Finding Line Anomalies (in code) with
Generative AI,” Jun. 2023, arXiv:2306.12643 [cs]. [Online]. Available:
http://arxiv.org/abs/2306.12643

[20] ——, “On Hardware Security Bug Code Fixes By Prompting Large
Language Models,” IEEE Trans. Inf. Forensics Security, pp. 1–1, 2024.
[Online]. Available: https://ieeexplore.ieee.org/document/10462177

[21] R. Kande et al., “(Security) Assertions by Large Language
Models,” IEEE Trans. Inf. Forensics Security, 2024, preprint:
https://arxiv.org/abs/2306.14027. [Online]. Available: https://ieeexplore.
ieee.org/document/10458667

[22] H. Pearce et al., “Asleep at the Keyboard? Assessing the Security of
GitHub Copilot’s Code Contributions,” in 2022 IEEE Symp. on Security
and Privacy (SP), May 2022, pp. 754–768.

[23] lowRISC, “Opentitan,” 2024, last accessed on 05/05/2024. [Online].
Available: https://github.com/lowRISC/opentitan

[24] “Trust-Hub.org.” [Online]. Available: https://trust-hub.org/#/home
[25] “CAD4Security – CAD4Security.” [Online]. Available: http:

//cad4security.org/
[26] “CAD for Assurance – CAD for Assurance of Electronic Systems.”

[Online]. Available: https://cadforassurance.org/
[27] J. Ah-kiow and B. Tan, “An Investigation of Hardware Security Bug

Characteristics in Open-Source Projects,” Feb. 2024, arXiv:2402.00684
[cs]. [Online]. Available: http://arxiv.org/abs/2402.00684

[28] M. Fischer et al., “Hardware Penetration Testing Knocks Your SoCs
Off,” IEEE Design Test, vol. 38, no. 1, pp. 14–21, Feb. 2021.

[29] “Cycuity | Security assurance starts here.” [Online]. Available:
https://cycuity.com/

[30] R. Zhang et al., “End-to-End Automated Exploit Generation for
Validating the Security of Processor Designs,” in 2018 51st
Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO).
Fukuoka: IEEE, Oct. 2018, pp. 815–827. [Online]. Available:
https://ieeexplore.ieee.org/document/8574588/

[31] X. Meng et al., “RTL-ConTest: Concolic Testing on RTL for Detecting
Security Vulnerabilities,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., pp. 1–1, 2021.

[32] K. Laeufer et al., “RFUZZ: coverage-directed fuzz testing of RTL
on FPGAs,” in Proc. the Int. Conf. on Computer-Aided Design. San
Diego California: ACM, Nov. 2018, pp. 1–8. [Online]. Available:
https://dl.acm.org/doi/10.1145/3240765.3240842

[33] A. Meza and R. Kastner, “Information Flow Coverage Metrics for
Hardware Security Verification,” Apr. 2023, arXiv:2304.08263 [cs].
[Online]. Available: http://arxiv.org/abs/2304.08263

[34] N. Farzana et al., “SAIF: Automated Asset Identification for Security
Verification at the Register Transfer Level,” in 2021 IEEE 39th VLSI
Test Symp. (VTS), Apr. 2021, pp. 1–7, iSSN: 2375-1053. [Online].
Available: https://ieeexplore.ieee.org/document/9441039

[35] R. Zhang and C. Sturton, “Transys: Leveraging Common Security
Properties Across Hardware Designs,” in 2020 IEEE Symp. on Security
and Privacy (SP). San Francisco, CA, USA: IEEE, May 2020, pp.
1713–1727. [Online]. Available: https://ieeexplore.ieee.org/document/
9152775/

[36] “Verilator User’s Guide — Verilator 5.024 documentation.” [Online].
Available: https://verilator.org/guide/latest/#

[37] Z. Wang et al., “LLMs and the Future of Chip Design: Unveiling
Security Risks and Building Trust,” May 2024, arXiv:2405.07061 [cs].
[Online]. Available: http://arxiv.org/abs/2405.07061

[38] X. Meng et al., “Unlocking Hardware Security Assurance: The Potential
of LLMs,” Aug. 2023, arXiv:2308.11042 [cs]. [Online]. Available:
http://arxiv.org/abs/2308.11042

[39] T. Trippel et al., “Bomberman: Defining and Defeating Hardware
Ticking Timebombs at Design-time,” in 2021 IEEE Symp. on Security
and Privacy (SP). San Francisco, CA, USA: IEEE, May 2021, pp. 970–
986. [Online]. Available: https://ieeexplore.ieee.org/document/9519417/

[40] T. Han, Y. Wang, and P. Liu, “Hardware Trojans Detection at Register
Transfer Level Based on Machine Learning,” in 2019 IEEE Int. Symp.
on Circuits and Systems (ISCAS), May 2019, pp. 1–5.

[41] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identification
of stealthy malicious logic using boolean functional analysis,” in Proc.
the 2013 ACM SIGSAC Conf. on Computer & communications
security. ACM, Nov. 2013, pp. 697–708. [Online]. Available:
https://doi.org/10.1145/2508859.2516654

[42] L. Gazzola, D. Micucci, and L. Mariani, “Automatic Software Repair: A
Survey,” IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 34–67, Jan. 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8089448/

[43] H. Ahmad, Y. Huang, and W. Weimer, “Cirfix: automatically
repairing defects in hardware design code,” in ACM Conf. on
Architectural Support for Programming Languages and Operating
Systems, Feb 2022, p. 990–1003. [Online]. Available: https://doi.org/
10.1145/3503222.3507763

[44] K. Laeufer et al., “RTL-Repair: Fast Symbolic Repair of Hardware
Design Code,” in Proc. the 29th ACM Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, Volume
3. La Jolla CA USA: ACM, Apr. 2024, pp. 867–881. [Online].
Available: https://dl.acm.org/doi/10.1145/3620666.3651346

https://newsroom.intel.com/wp-content/uploads/sites/11/2020/10/sdl-2020-whitepaper.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2020/10/sdl-2020-whitepaper.pdf
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://ieeexplore.ieee.org/document/9154739/
https://ieeexplore.ieee.org/document/9154739/
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://dl.acm.org/doi/10.1145/3508352.3549369
https://cwe.mitre.org/data/definitions/1194.html
https://cwe.mitre.org/data/definitions/1194.html
https://www.accellera.org/images/downloads/standards/Accellera_SA-EDI_Standard_v10.pdf
https://www.accellera.org/images/downloads/standards/Accellera_SA-EDI_Standard_v10.pdf
https://standards.ieee.org/ieee/3164/11106/
https://standards.ieee.org/ieee/3164/11106/
https://hackthesilicon.com/
https://hackthesilicon.com/
http://ieeexplore.ieee.org/document/6860363/
http://ieeexplore.ieee.org/document/6860363/
http://doi.org/10.1145/2906147
https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.1007/978-0-387-71829-3_2
https://ieeexplore.ieee.org/abstract/document/9806254
https://ieeexplore.ieee.org/abstract/document/9806254
https://ieeexplore.ieee.org/document/10496567
http://arxiv.org/abs/2402.08165
http://arxiv.org/abs/2402.08165
https://ieeexplore.ieee.org/document/10308602/
http://arxiv.org/abs/2404.07235
http://arxiv.org/abs/2306.12643
https://ieeexplore.ieee.org/document/10462177
https://ieeexplore.ieee.org/document/10458667
https://ieeexplore.ieee.org/document/10458667
https://github.com/lowRISC/opentitan
https://trust-hub.org/#/home
http://cad4security.org/
http://cad4security.org/
https://cadforassurance.org/
http://arxiv.org/abs/2402.00684
https://cycuity.com/
https://ieeexplore.ieee.org/document/8574588/
https://dl.acm.org/doi/10.1145/3240765.3240842
http://arxiv.org/abs/2304.08263
https://ieeexplore.ieee.org/document/9441039
https://ieeexplore.ieee.org/document/9152775/
https://ieeexplore.ieee.org/document/9152775/
https://verilator.org/guide/latest/#
http://arxiv.org/abs/2405.07061
http://arxiv.org/abs/2308.11042
https://ieeexplore.ieee.org/document/9519417/
https://doi.org/10.1145/2508859.2516654
https://ieeexplore.ieee.org/document/8089448/
https://doi.org/10.1145/3503222.3507763
https://doi.org/10.1145/3503222.3507763
https://dl.acm.org/doi/10.1145/3620666.3651346

