
Critical Sensor Failure Analysis for Proactive Mitigation
in Secure System-on-Chip for UAVs

Yashrajsinh Parmar˚, Junior Sundar:, Rafail Psiakis˚, Florian Caullery˚, Martin Andreoni˚, Ari Kulmala˚

˚Secure Systems Research Center - Technology Innovation Institute (TII), Abu Dhabi, United Arab Emirates
:Unikie MEA Ltd., Abu Dhabi, United Arab Emirates

Abstract—Unmanned Aerial Vehicles (UAVs) have revolution-
ized various industries by offering versatile surveillance, delivery,
agriculture, and more capabilities. However, ensuring their safe
operation remains a paramount concern. This paper delves into
analyzing critical time-to-failure scenarios stemming from drone
sensor malfunctions. We explore the performance thresholds
demanded by the System-on-Chip (SoC) to swiftly detect and
mitigate impending failures, thereby averting catastrophic flight
incidents. We demonstrate that the SoC must promptly identify
any faults in the drone sensor within a mere 0.56 seconds to
prevent the risk of flight failure. We take an open-source RISC-
V-based SoC as a reference and identify key factors influencing
failure criticality through empirical analysis and simulation.

I. INTRODUCTION

The rapid rise of UAVs has revolutionized industries like
surveillance, delivery, and agriculture. With their ability to
operate autonomously, they offer new efficiencies and possi-
bilities. For instance, the global drone taxi market is expected
to hit USD 869.9 million by 20301. However, this surge in
UAV usage raises significant safety concerns [3] that must
be addressed to prevent accidents, ensure public safety, and
maintain trust in the technology.

The safe operation of UAVs relies heavily on the reliability
of their onboard sensors, which provide critical flight data
such as altitude, velocity, and orientation. Any malfunctions
or inaccuracies in sensor data can lead to disastrous flight
incidents if not promptly detected and addressed [12]. Thus,
fault detection and sensor reliability are crucial for ensuring
UAV safety. Robust fault detection mechanisms help identify
potential issues early on, enhancing the resilience and depend-
ability of autonomous systems. Prioritizing sensor reliability
significantly reduces the risks associated with UAV operations,
thereby fostering greater trust and wider adoption of drone
technologies.

Previous studies on sensor fault detection have primarily
focused on model-driven [7, 10, 11] and data-driven ap-
proaches [16, 8, 18, 19]. With advancements in deep learning
algorithms like Long-Short Term Memory (LSTM)[14] and
Convolution Neural Network (CNN)[2], data-driven meth-
ods are increasingly preferred over traditional model-specific
techniques. Unlike model-driven methods requiring precise
physical models, data-driven approaches utilize historical flight
data to detect anomalies. Neural network analysis of flight data
enables more accurate and efficient fault detection, enhancing
UAV safety. This shift towards data-driven solutions highlights

1https://www.emergenresearch.com/industry-report/drone-taxi-market

the potential of machine learning to transform sensor fault
detection, providing a more adaptable and robust framework
for ensuring UAV safety.

Understanding the architecture of modern UAV platforms
is crucial for analyzing the impact of sensor failures. One
example is the Shaheen open-source RISC-V-based SoC for
nano-UAVs [17]. Shaheen SoC functions include processing
sensor data, executing control algorithms, collecting flight
logs, and monitoring sensor data for fault detection. Upon de-
tecting a sensor fault, the system applies mitigation strategies
to ensure safe operation [15]. Sensor data fault detection can
be achieved using data-driven models on either on-chip AI
accelerators [9] or external AI accelerators like the NVIDIA
Jetson Orion AGX. The choice of processing unit depends on
the complexity of fault detection models. For simpler models,
processing within the SoC is efficient. However, for more
complex models requiring higher computational power, ex-
ternal accelerators may be utilized. This processing flexibility
enables UAV platforms to maintain high reliability and safety
standards by effectively detecting and mitigating sensor faults.

The computation of data-driven models must consider the
Lead Time. Lead Time refers to the interval between the
occurrence of a fault and its manifestation as a system failure.
Despite its importance, very few studies have examined Lead
Time across sensor failure scenarios. Authors in [4] focused
solely on the Lead Time for GPS sensors. However, their
study did not account for the reduction in Lead Time resulting
from mitigation latency—a crucial factor in preventing a
flight transition into a Failed state. Additionally, the study
overlooked the impact of other sensor failures, such as those
in the gyroscope, accelerometer, magnetometer, barometer, and
distance sensor, on Lead Time. Understanding and addressing
these gaps is vital for developing comprehensive fault detec-
tion and mitigation strategies that enhance the reliability and
safety of UAV operations.

In this paper, we delve into analyzing critical time-to-
failure scenarios stemming from drone sensor malfunctions.
We explore the performance thresholds demanded by the
System-on-Chip (SoC) to swiftly detect and mitigate im-
pending failures, thereby averting catastrophic flight incidents.
Using an open-source RISC-V-based SoC as a reference [17],
we identify key factors influencing failure criticality through
empirical analysis and simulation. The major contributions
of this work are piq Using Hardware in The Loop (HiTL)
setup, we measure the Lead times for various faults for
the Gyroscope, Accelerometer, Magnetometer, and Barometer,



TABLE I
LEAD TIME (ALL VALUES ARE IN SECONDS) FOR VARIOUS SENSOR

FAULTS IN A PX4 FLIGHT CONTROLLER. GYRO: GYROSCOPE, ACCEL:
ACCELEROMETER, BARO: BAROMETER & MAG: MAGNETOMETER; *:

GPS FAULT INCLUDES SIMULTANEOUS FAULT INJECTION TO LATITUDE,
LONGITUDE & ALTITUDE

Fault Type Gyro Accel GPS* Baro Mag

Maximum Value 0.92 2.11 2.84 No Fail 112.89
Minimum Value 0.91 1.73 5.60 No Fail No Fail
Sensor Failure 1.56 3.22 5.62 No Fail No Fail

thereby resulting in performance requirements for the System-
on-Chip (SoC). piiq We discuss the challenges of executing
fault detection algorithms on external AI Accelerator piiiq We
present a detailed performance analysis of various data-driven
fault detection models [16, 8, 18, 19] for processing within
the SoC and using the external AI Accelerator.

The remainder of this paper is structured as follows. Sec-
tion II identifies common drone sensor types and examines
potential failure scenarios and their impact on flight safety.
Section III gives an overview of the configuration for executing
Fault detection algorithms within the SoC or external AI Ac-
celerator. Section IV discusses the performance requirements
of SoC in flight controllers. Section V concludes the paper.

II. CRITICAL SENSOR FAILURES IN DRONES

This section describes the setup of Hardware in The Loop
(HiTL), which simulates the sensor fault and flight failure
conditions in real time. We then identify potential failure
scenarios for each type of sensor and assess the impact of
sensor failures on Lead Time.

Figure 1 illustrates the HiTL simulation setup. Conducted
on a Lenovo ThinkPad T14 Gen 4 with a 13th Gen Intel
i7-1355U (12) @ 5.0 GHz processor, the experiment em-
ploys a Pixhawk v5 flight controller. This controller features
an ARM Cortex-M7@ 216MHz flight controller CPU and
supports 3x Inertial Measurement Unit (IMU), Barometer,
and Magnetometer. Utilizing jMAVSim as the simulation
environment, it seamlessly integrates with PX4-Autopilot for
hardware-in-the-loop implementation. In HiTL, PX4 firmware
operates on genuine flight controller hardware, with controller
inputs and outputs interfaced between the simulation envi-
ronment. Custom parameters in the sensor module source
code simulate sensor fault lead time. Flight failure catego-
rization includes three qualitative state tags: ACCEPTABLE,
UNACCEPTABLE, and FAILURE. ACCEPTABLE signifies the
drone remaining within a 0.5m radius of its hovering location,
UNACCEPTABLE denotes violation of this boundary within
a 2.0m radius, and FAILURE indicates complete boundary
breach, including scenarios like drone overturning or forced
landing. Lead time calculation is based on fault injection time
and flight time to FAILURE.

From the work [4], the following faults show worst-case
flight failure lead times:

‚ Maximum Value: The input value of the sensor is set to
maximum

Fig. 1. Setup for HiTL simulation

‚ Minimum Value: The input value of the sensor is set to
minimum

‚ Sensor Failure: There is no input value available from the
sensor

Table I compares the lead times of different sensor failures in
a typical Drone running a PX4 flight controller. The lead time
is measured by performing simulation using HiTL setup. The
GPS sensor failure fault lead time aligns with the results from
[4]. It is worth noting that the worst-case Lead Time for the
gyroscope’s Minimum Value fault is 0.909 sec.

Figure 2 shows the actual Lead time available for the system
to detect fault. The mitigation latency to initiate emergency
landing of the UAV, estimated using the HiTL simulation, is
approximately 0.350 sec. The actual lead time available is
0.909 ´ 0.350 sec = 0.56 sec. This implies that the system
needs to detect the fault and take necessary mitigation actions
within 0.56 sec only.

T= 0
Normal Flight

Operation 

T= TFault
Fault Occurance in

Sensor

Safe Boundary of Flight Operation

T= TFault_detected
Sensor Fault detected 

T= TFail
Flight Failure if no mitigation

operation initiated

Actual Lead Time = 
TFail - TFault - Mitigation Latency Mitigation Latency = 

TFail - TFault_detected

Fig. 2. Lead Time for Sensor Fault to Flight Failure

III. SOC ARCHITECTURE FOR FLIGHT CONTROLLER AND
SENSOR FAULT DETECTION

This section explores the SoC architecture for executing
flight controller and sensor fault detection functions, while
enabling secure data transmission to prevent unauthorized
manipulation.

Flight
Controller

CPU
Subsystem

PULP AI
Accelerator
Subsystem

Open-
Titan

Security
Subsystem

IO
Interfaces

Host Interconnect Ethernet Ethernet Host Interconnect

Application
Processor
Subsystem

GPU

Flight Controller SoC External AI Accelerator 
eg: Nvidia Jetson Orion AGX

Memory
Controller

Memory
Controller

RAMSensors RAM

On-Chip
Memory

On-Chip
Memory

Fig. 3. SoC Block Diagram with an external AI Accelerator

Figure 3 displays the SoC block diagram, leveraging a
design from [6]. It features a 64-bit RISC-V CVA6 CPU core



[20], supporting real-time execution of the flight controller
stack. Peripheral data is managed via on-chip memory and
various peripherals, facilitated by a dedicated µDMA [13].
Additionally, an on-chip AI Accelerator, PULP [9], with 8x
CV32E-processor cores, aids in executing ML algorithms for
sensor data fault detection [16, 8, 18, 19].

The on-chip AI Accelerator’s processing capability reaches
up to 7.9 GFLOp/s on 16-bit FP kernels while operating
at max 500MHz frequency[9]. For more intensive tasks, an
external AI Accelerator like NVIDIA Jetson Orion AGX can
be employed, connected via Ethernet interface for real-time
computational requirements (as shown in Figure 3).

The Ethernet interface serves two functions: securely trans-
mitting flight logs, sensor outputs, and other critical data
for fault detection models, while also handling non-secure
data streams for untrusted applications. Although the Eth-
ernet controller supports dedicated FIFOs for multiple data
streams, it lacks a mechanism for generating unique Stream-
IDs per data stream. Consequently, this deficiency prevents
the implementation of access control measures to prevent
unauthorized access to the secure data stream, jeopardizing
its confidentiality and integrity.

To safeguard the confidentiality and integrity of critical
data, it is imperative to encrypt the secure data and generate
hashes on the plain data as a means of authentication. We
use the crypto accelerator implemented using the Opentitan
framework [6, 17] for encrypting and generating the hash of
the message.

Two data paths are utilized for sensor fault detection based
on computational complexity of the data-model.

‚ For fault detection models with low-computation require-
ment, the The PULP AI Accelerator conducts ML model
inference, with the resulting output stored in on-chip
memory for CPU processing.

‚ For fault detection models with high-computation require-
ment, Opentitan executes the Sensor data encryption and
hash generation. Encrypted data and hash are transmitted
to the external AI Accelerator via Ethernet. The external
AI Accelerator verifies the hash, decrypts data, executes
fault detection on GPU, and encrypts the result. The
processed result is then transmitted back to the SoC,
where it’s verified, decrypted, and stored in on-chip
memory for CPU action.

IV. PERFORMANCE ANALYSIS FOR SENSOR FAULT
DETECTION

Now that we have discussed the possible data paths for
sensor fault detection, we present the performance analysis of
each data path in this section. We then identify the perfor-
mance bottlenecks for each data path and propose potential
SoC architecture updates for timely failure detection and
mitigation, as discussed in Section II.

For our analysis, we consider the following sensors being
interfaced with the Flight Controller SoC: 1qIMU: Dual ICM-
42688-P + ICM-20649, 2q Barometer: Dual BMP388, 3q

Magnetometer: BMM150 + IST8310 and 4q GPS: u-blox

TABLE II
PERFORMANCE OF PULP AI ACCELERATOR. TCN: TEMPORAL

CONVOLUTION NETWORK, CNN: CONVOLUTION NEURAL NETWORK,
LSTM: LONG-SHORT TERM MEMORY NETWORK, A: ACCELEROMETER,

G: GYROSCOPE, B: BAROMETER, ALT: ALTITUDE, PWM: ACTUATOR
INPUT; LATENCY NUMBERS ARE IN MILLISECONDS

Work ML Network Model Input Accuracy Latency
[19] TCN G, B, PWM 94.76% 1.57
[18] LSTM-RF A, G, Alt 86.80% 0.74
[8] 1D CNN + LSTM A, G, PWM 92.74% 6.51
[16] LSTM+FC A, G, PWM 96.30% 743.24

NEO-M9N. Based on the output of these sensors, the number
of inputs for ML-based fault detection model is 19. The max
sensor sampling frequency and PWM update rate for the
motors is predefined by the PX4 Flight controller specification
[1]. For executing fault detection on the sensor data, the sensor
data is aggregated in the on-chip memory.

A. Performance Analysis of Fault Detection using On-Chip
PULP AI Accelerator

The major computational bottleneck of fault detection us-
ing the on-chip AI Accelerator (refer to section III) is the
low throughput of the PULP. In Table II, we present the
performance achieved by the PULP AI Accelerator to detect
sensor faults. We use the cycle-accurate GVSoC simulator for
estimating the latency [5].

The works in [8, 18, 19] use the pre-trained ML-based fault
detection model. These models consider a sliding window
approach to generate the input data for the fault detection
model. The size of the sliding window is restricted to very
limited history of the sensor data (approximately 50 msec).
The total data aggregated within 50 msec, from the above men-
tioned sensors, is approximately 14 KBytes. The advantage of
this approach is faster inference time, as shown in Table II.
However, since the view of the history is very limited, these
models suffer from low accuracy. The work in [16], is based
on detecting flight log anomalies that could result in physical
instabilities online, while the drone is conducting a flight
mission. The advantage of detecting faults based on the inputs
of previous flight controller logs (of approximately 120 msec)
and current sensor data is to achieve higher accuracy in fault
detection. However, the disadvantage of such an approach is
the latency of the inference. As shown in Table II, [16] requires
0.75 sec to perform a single inference. This violates the actual
lead time of 0.56 sec (refer to Section IV).

Also, it is beneficial to execute multiple inferences within
the boundary of the actual lead time to reduce the possibility
of a False Positive or False Negative prediction result. Because
of this reason, it is mandatory to execute the fault detection
algorithm of [16] using an external AI Accelerator with higher
computational capabilities.

B. Performance Analysis of Fault Detection using On-Chip
PULP AI Accelerator + AI Accelerator SoC

To execute sensor fault detection with a very high accuracy
model, like [16], we use an external AI Accelerator SoC. For



the performance analysis, we use NVIDIA Jetson Orion AGX
64GB AI Accelerator, with total throughput of 275 TOPS. This
accelerator is interfaced to the flight controller SoC using the
Ethernet interface (Figure 3).

TABLE III
PERFORMANCE OF EXECUTING FAULT DETECTION ALGORITHM ON

EXTERNAL AI ACCELERATOR;
ALL LATENCY NUMBERS ARE IN MILLISECONDS

SoC Datapath Latency

Flight
Controller SoC

Opentitan: AES-256 Encryption 1329.22
Opentitan: SHA-256 Hash Generation 645.2
Ethernet Latency Tx 0.286

AI Accelerator:
Nvidia Jetson

SHA verification & AES Decryption 0.01
GPU latency 0.046
Hash generation and AES Encryption 0.01
Ethernet Latency Rx 0.0000112

Flight
Controller SoC

Opentitan: Hash verification 0.003
Opentitan: AES-256 Decryption 0.005
Total Latency 1974.78

Table III displays the computational latency of the data-
path for executing the fault detection algorithm in [16]. With
an aggregated data size of approximately 30 KBytes over
a 120 msec window, it’s notable that the ML algorithm’s
inference time is only 0.046 msec (compared to 746 msec
using PULP). However, Opentitan’s performance, operating
at max 350 MHz, poses a significant bottleneck for this
solution. Over 99% of computation time is spent on AES-256
encryption and SHA-256 hash generation for the 30 KBytes
payload. From [17], it’s evident that about 73% of the overall
crypto-latency is dedicated to data movement to/from external
RAM, managed by the Ibex processor within Opentitan.

Nvidia Jetson CPU supports ARM crypto extensions on
Quad-A78 cores running at 1500MHz, offering minimal la-
tency for AES-256 and SHA-256 crypto-extensions compared
to Opentitan. Ethernet RGMII operates at 1000 Mbps speed.
The output data-width of the fault detection model is 64 Bytes.
Nvidia encrypts and generates hash of the output, transmitting
it over the Ethernet interface back to the Flight controller SoC
for hash verification and result decryption.

The bottleneck of Opentitan’s high computational latency
results in failure to complete fault detection execution using
an external AI Accelerator within the 0.56 sec Lead time (as
discussed in Section IV). To address this issue, potential solu-
tions include: piq Implementing a dedicated DMA mechanism
for accessing data in external memory, or piiq Modifying the
CVA6 CPU core to support RISC-V Crypto extensions.

V. CONCLUSION

Key findings of this study include: piq Gyroscope sensor
Lead Time is notably inferior to other drone sensors, piiq
Ensuring confidentiality, integrity, and reliability for flight
logs transmitted over non-secure interfaces to external AI
Accelerators is imperative, and piiiq The prolonged computa-
tional latency of Opentitan’s crypto-accelerator impedes fault

detection execution within the critical 0.56-second lead time.
For future work, we propose to integrate DMA into Opentitan
or enable RISC-V crypto-extension for CVA6 CPU core, to
reduce the computational latency of the fault detection using
external AI Acclerator.

REFERENCES
[1] PX4 Autopilot: Parameter Reference. URL https://docs.px4.io/main/en/

advanced config/parameter reference.html.
[2] S. Albawi et al. Understanding of a convolutional neural network. In

2017 International Conference on Engineering and Technology (ICET),
pages 1–6, 2017.

[3] M. Andreoni Lopez et al. Towards secure wireless mesh networks for
UAV swarm connectivity: Current threats, research, and opportunities. In
2021 17th International Conference on Distributed Computing in Sensor
Systems (DCOSS), pages 319–326. IEEE, 2021.

[4] O. Asghari et al. Lead Time Analysis for UAVs’ Failure Prediction in
U-space. In 2023 IEEE 28th Pacific Rim International Symposium on
Dependable Computing (PRDC), pages 123–133, 2023.

[5] N. Bruschi et al. GVSoC: A Highly Configurable, Fast and Accurate
Full-Platform Simulator for RISC-V based IoT Processors. IEEE, Oct.
2021.

[6] M. Ciani et al. Cyber Security Aboard Micro Aerial Vehicles: An
Opentitan-Based Visual Communication Use Case. In 2023 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5.
IEEE, 2023.

[7] E. D’Amato et al. UAV Sensor FDI in Duplex Attitude Estimation
Architectures Using a Set-Based Approach. IEEE Transactions on
Instrumentation and Measurement, PP:1–11, 06 2018.

[8] J. Fu et al. A hybrid CNN-LSTM model based actuator fault diagnosis
for six-rotor UAVs. pages 410–414, 2019.

[9] A. Garofalo et al. PULP-NN: Accelerating Quantized Neural Networks
on Parallel Ultra-Low-Power RISC-V processors. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 378(2164):20190155, Dec. 2019.

[10] D. Guo et al. Multisensor Data-Fusion-Based Approach to Airspeed
Measurement Fault Detection for Unmanned Aerial Vehicles. IEEE
Transactions on Instrumentation and Measurement, PP:1–11, 12 2017.

[11] L. Liu et al. Fault Detection and Isolation Based on UKFs for a Novel
Ducted fan UAV. pages 212–218, 10 2016.

[12] P. Moosbrugger et al. R2U2: Monitoring and Diagnosis of Security
Threats for Unmanned Aerial Systems. Formal Methods in System
Design, 51, 08 2017.

[13] A. Pullini et al. uDMA: An autonomous I/O subsystem for IoT end-
nodes. In 2017 27th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 1–8, 2017.

[14] H. Sak et al. Long Short-Term Memory Recurrent Neural Network
Architectures for Large Scale Acoustic Modeling. Proceedings of
the Annual Conference of the International Speech Communication
Association, INTERSPEECH, pages 338–342, 01 2014.

[15] D. A. Santos et al. Enhancing Fault Awareness and Reliability of a
Fault-Tolerant RISC-V System-on-Chip. Electronics, 12(12), 2023.

[16] L. K. Shar et al. DronLomaly: Runtime Detection of Anomalous Drone
Behaviors via Log Analysis and Deep Learning. In 2022 29th Asia-
Pacific Software Engineering Conference (APSEC), pages 119–128, 12
2022.

[17] L. Valente et al. A Heterogeneous RISC-V Based SoC for Secure Nano-
UAV Navigation. IEEE Transactions on Circuits and Systems I: Regular
Papers, 71(5):2266–2279, May 2024.

[18] B. Wang et al. Multivariate Regression Based Fault Detection and
Recovery of UAV Flight Data. IEEE Transactions on Instrumentation
and Measurement, PP:1–1, 08 2019.

[19] J. You et al. An Adaptable UAV Sensor Data Anomaly Detection Method
Based on TCN Model Transferring. pages 73–76, 05 2022.

[20] F. Zaruba et al. The Cost of Application-Class Processing: Energy and
Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 27(11):2629–2640, 2019.


