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Abstract—Open-source hardware (OSHW) is rapidly gaining
traction in academia and industry. The availability of open RTL
descriptions, EDA tools, and even PDKs enables a fully auditable
supply chain for end-to-end (RTL to layout) open-source silicon,
significantly strengthening security and transparency. Despite
promising developments, existing OSHW efforts have so far fallen
short of producing end-to-end open-source SoCs at the complexity
and performance level needed to run a general-purpose OS. We
present Basilisk, the first end-to-end open-source, Linux-capable
RISC-V SoC taped out in IHP’s open 130 nm technology. Basilisk
features a 64-bit RISC-V core, a fully digital HyperRAM DRAM
controller, and a rich set of IO peripherals including USB 1.1
and VGA. To tape out Basilisk, we create a reusable tool pipeline
to convert its industry-grade SystemVerilog description to Verilog.
We optimized logic synthesis in the open source Yosys synthesis
tool, obtaining an increase in Basilisk’s peak clock speed by 2.3×
to 77 MHz and reducing its cell area by 1.6× to 1.1 MGE while
also reducing synthesis runtime and RAM usage. We further
optimized place and route in OpenROAD, enabling convergence
to zero DRC violations while increasing core area utilization by
10 % and reducing die area by 12 %.

Index Terms—Open-source hardware, SoCs, EDA, RISC-V

I. INTRODUCTION

In recent years, open-source hardware (OSHW) has gained
attention from industry and academia alike. The increased
momentum on open source hardware has led to the cre-
ation of open register transfer level (RTL) descriptions for
intellectual property (IP) blocks [1]–[3], electronic design
automation (EDA) tools [4], [5], and even process design
kits (PDKs) [6]. OSHW opens up a traditionally closed design
process, curtailing or even eliminating IP and tool licensing
costs and enabling open research and collaboration without
non-disclosure agreements (NDAs).

Most notably, OSHW enables a transparent and verifiable
hardware supply chain from RTL description to layout. By
combining open IPs, EDA tools, and PDKs into an end-to-end
open-source flow, open hardware designers can empower third
parties to not only reproduce the final layout, but to fully audit
its design process and verify its logic equivalence to the original
RTL description. Instead of having to trust closed-source tools
and IPs from commercial providers, the functionality and
security of OSHW can be verified independently across levels
of abstraction.

Strengthening security through auditable OSHW is not a
new idea; the OpenTitan project [7] provides open-source
root of trust (RoT) IPs and recently taped out a first chip
with RoT functionality. However, while some OpenTitan test
chips were designed using partially open tools, none of their
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existing designs are end-to-end open-source. Moreover, even
if applications can trust an open RoT with isolating security-
critical data and operations, the remaining system-on-chip (SoC)
is usually closed-source and cannot be trusted by programmers
or end users. Some partially open-source processors [3], [8]
and SoCs [2], [9] are available, but to date, there is no existing
end-to-end open-source Linux-capable SoC.

In this work, we present Basilisk1, the first end-to-end
open-source, Linux-capable RISC-V SoC taped out in IHP’s
open 130 nm technology. Basilisk is based on the configurable
Cheshire [9] SoC platform and combines an RV64GC core
with a fully digital HyperRAM DRAM controller and a rich
set of peripherals, including VGA and USB 1.1, to complete a
useful real-world Linux system. Like its hardware, Basilisk’s
boot code and firmware are completely open; from reset to
Linux init, all executed code is open-source and auditable.

To tape out Basilisk with competitive quality of results (QoR),
we vastly improve the state-of-the-art open EDA flow using
Yosys [5] and OpenROAD [4]. First, we create a reusable tool
pipeline simplifying Basilisk’s industry-grade SystemVerilog
(SV) RTL description to Yosys-supported Verilog by introduc-
ing our parameter-resolving SV pre-elaborator SVase. Then,
we optimize Yosys’ logic synthesis by improving multiplexer
handling, integrating lazy man’s synthesis (LMS) [10], and
mapping arithmetic units to a library of preoptimized designs.
Finally, we improve the OpenROAD place and route (P&R)
tool flow by designing a routing-friendly power grid and
tuning global hyperparameters. Overall, our flow optimizations
improve Basilisk’s peak clock frequency from 33 MHz to
77 MHz, reduce logic area from 1.8 MGE to 1.1 MGE, increase
core utilization from 50 % to 55 %, and reduce synthesis
runtime and peak RAM usage by 2.5× and 2.9×, respectively.

To summarize, our contributions are as follows:

• We present Basilisk’s open-source, extensible architecture
featuring a Linux-capable 64-bit RISC-V core, a Hyper-
RAM DRAM controller, a hierarchical interconnect, and
a rich set of IO peripherals including USB 1.1 and VGA.

• We create a reusable open-source tool pipeline simplifying
Basilisk’s industry-grade SV RTL description to a single
Yosys-readable Verilog file by leveraging our parameter-
resolving SV pre-elaborator SVase.

• We optimize Yosys’ logic synthesis QoR by improving
multiplexer handling, integrating LMS, and leveraging a
library of optimized arithmetic units, increasing Basilisk’s

1https://github.com/pulp-platform/cheshire-ihp130-o
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Fig. 1. Top-level block diagram of Basilisk.

clock speed by 2.3× and reducing its cell area by 1.6×
while also reducing synthesis runtime and RAM usage.

• We improve the OpenROAD P&R tool flow by designing
a routing-friendly power grid and tuning global hyperpa-
rameters, achieving zero design rule violations, improving
core utilization by 10 %, and reducing die area by 12 %.

II. ARCHITECTURE

Basilisk is built around OpenHWGroup’s energy-efficient
RV64GC CVA6 [8] processor. It is based on our open-source,
silicon-proven Cheshire SoC platform [9] designed to provide
a minimal, highly configurable, autonomously booting 64-bit
RISC-V host for Linux-capable systems.

Fig. 1 shows Basilisk’s top-level architecture. It includes all
hardware components necessary to boot and run Linux without
support from an external host, such as RISC-V-compliant
interrupt controllers, various standard IO interfaces, and a
fully digital DRAM interface. To balance performance and
design complexity, Basilisk uses a two-stage interconnect:
request initiators and high-throughput endpoints attach to
a fully connected 64-bit Advanced eXtensible Interface 4
(AXI4) [11] crossbar, while low-throughput peripherals and
configuration interfaces without burst support are accessed
through a lightweight Regbus [12] demultiplexer.

Basilisk features a fully digital HyperRAM DRAM controller
supporting two chips and a transfer speeds of up to 154 MB/s.
The controller is connected to the AXI4 crossbar through a 4-
way, 64 KiB last-level cache (LLC); each way can dynamically
be configured as scratchpad memory to provide on-chip SRAM
when needed. CVA6 is configured with 2-way, 16 KiB L1
instruction and data caches.

Basilisk provides a rich set of peripherals. In addition to I2C,
quad SPI, and UART for serial communication, it includes a
four-port USB 1.1 (OHCI) host controller and a VGA controller
for video output. Unlike later protocol revisions, USB 1.1
can be implemented using only digital logic and regular-
speed IOs, keeping Basilisk’s design highly accessible. Each
USB port is multiplexed with GPIOs, providing a software-
controlled IO bus up to 8 bit wide. A JTAG test access
point connected to a RISC-V debug module enables live
debugging of the CVA6 core and full memory bus access.
A fully-digital, double-data-rate, duplex 77 Mbit/s chip-to-chip
(C2C) link serializing the AXI4 protocol allows two Basilisk
chips to communicate through direct interconnect accesses. A
high-efficiency, asynchronous DMA engine [13] capable of
2D transfers relieves CVA6 of data movement tasks. All of
Basilisk’s peripherals are designed to be Linux-compatible,

with many already having working drivers for our version of
CVA6 Linux (kernel version 5.10.7, updates ongoing).

Basilisk’s boot ROM enables autonomous boot from a GPT-
formatted SD card, SPI NOR flash, or I2C EEPROM. It loads a
small binary of up to 48 KiB into its internal scratchpad, which
in turn may load a firmware (e.g. OpenSBI) and a full-fledged
bootloader (e.g. U-Boot) into DRAM. Alternatively, code may
also be preloaded through JTAG, UART, or the C2C link. In
our upstream setup, all software run from SoC reset to Linux
userspace is completely open-source and auditable, including
the boot ROM, firmware, and our Linux modifications.

Basilisk is highly extensible and reconfigurable by design.
Adding interconnect ports and interrupts for new IPs, removing
existing blocks, or even using multiple CVA6 cores is simply
a matter of reparameterization. We hope this will allow other
designers to build on and extend Basilisk with minimal effort.

III. IMPLEMENTATION FLOW

We implement Basilisk in IHP’s open 130 nm technology us-
ing Yosys and OpenROAD. To this end, we implement a reusable
tool pipeline simplifying Basilisk’s industry-grade SV RTL
description to Verilog supported by Yosys (Section III-A),
enhance synthesis to significantly improve QoR while reducing
runtime and memory footprint (Section III-B), and optimize
the reference backend flow to improve QoR and minimize
design rule violations (Section III-C).

A. RTL Description Preprocessing

Yosys currently cannot read in synthesizable SV, supporting
only Verilog-2005 and a few selected SV constructs. Existing
open-source solutions to synthesize SV designs in Yosys
include the SV-to-Verilog conversion tool SV2V [14] and the
third-party Synlig [15] frontend. Unfortunately, these solutions
cannot handle Basilisk’s industry-grade RTL description; both
fail to correctly resolve hierarchically propagated design
parameters, which are essential to keeping complex, parametric
designs manageable without resorting to code generation.

Prior to our work, the only open-source tool correctly
resolving Basilisk’s parameterization was Slang [16], a library
providing full SV elaboration and the best SV language support
of all open-source tools evaluated by ChipsAlliance’s SV test
suite [17]. However, as a library, Slang only provides elaborated
designs as in-memory data structures with no existing solution
to pass them on to Yosys for synthesis.

To close this flow gap, we created SVase [18], a source-to-
source SV pre-elaborator leveraging Slang. SVase rewrites
all parameter expressions as literals, unrolls all generate
constructs, and uniquifies every used module parameterization.
The resulting SV RTL description has no unresolved parameters
or dependencies between instances and is simple enough to
correctly be translated to Verilog by SV2V.

For simplicity, SVase assumes that all input SV sources are
collected in a single file, which we automate using our existing
source management tool Bender [19] and our SV source pickler
Morty [20]. Fig. 2 shows the resulting end-to-end tool flow
converting Basilisk’s multi-file SV RTL description to a single
Verilog file readable by Yosys. We emphasize that this flow is
not specific to Basilisk or Yosys; it can simplify any industry-
grade SV design to a single Verilog file for use with any tool,
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Fig. 2. Basilisk’s SV-to-Verilog RTL description preprocessing flow.

including simulators with limited SV support. Furthermore, the
full flow takes less than two minutes to run on Basilisk, which
is two orders of magnitude less than Yosys synthesis after our
optimizations (2.2 h) and comparable to elaboration steps in
commercial, SV-capable simulators and synthesis tools.

B. Synthesis Enhancements

Before our work, synthesizing Basilisk with Yosys resulted
in inacceptable QoR and inflated runtime and memory usage
(see Section III-C). We present three key, design-independent
improvements to Yosys’ logic synthesis that drastically improve
design QoR and Yosys’ resource footprint.

Part-select synthesis: Yosys versions prior to our improve-
ments (<0.34) use generic shift operations ($shiftx) to
represent all indexed part-select operations instead of more
efficient block-multiplexer trees where possible. Thus, for any
part select, a generic barrel shifter supporting an arbitrary shift
amount is inferred at elaboration. This broad generalization
significantly inflates area and increases runtime and peak
memory usage; it is especially problematic in conjunction with
SV2V, which translates all selections into arrays of packed data
as part selects. Later logic optimization stages are unable to
simplify these shifters to the desired multiplexer trees, strongly
impacting QoR. Instead of changing the representation of part-
selects, we develop a new optimization pass that identifies shift
operations with constant strides, pads the implied blocks to
a power of two, and thus enables existing optimizations to
remove unnecessary logic. Compared to a solution inferring
block multiplexers, our approach achieves the same results on
part selects, but overall superior results as other shift operations
may also benefit from this optimization.

Lazy man’s synthesis: In cooperation with logic synthesis
researchers and ABC developers, we overhaul the ABC script,
leveraging Yang et al.’s work on LMS [10] to improve
QoR at the cost of minimal additional runtime. Near-optimal
implementations of six-input, one-output logic functions are
precomputed using other optimizers in ABC. The functions and
implementations, together with their characteristics, are stored
in a look-up table. This process is time- and resource-intensive,
but only needs to be performed once, and the resulting table
can be re-used across different designs. During synthesis, the
netlist is divided into blocks with six inputs and one output
and the table is probed for the best fitting implementation,
replacing each block with the corresponding structure.

Library of Arithmetic Units: Yosys currently uses a sub-
optimal approach to implement fundamental arithmetic units.
Addition operations infer one globally selected adder architec-
ture, impeding a balanced area-speed tradeoff. Multiplication
operations are implemented using Booth’s algorithm. More

complex operations are implemented using the basic operation
mappings; in the case of the multiply-accumulate (MAC)
operation, a Booth multiplier followed by an adder is inferred. A
more efficient solution is to integrate adders into the CSA tree of
preceding multipliers, creating fused multiply-add (FMA) units.
We use our library of optimized arithmetic unit implementations
to map a timing-critical MAC operation as an FMA unit,
shortening our critical path. We further replace the default
adder implementation in Yosys with a selection of optimized
adder architectures. A solution to automatically infer FMAs and
other fused operations and implement them from our library
is in the works.

C. Place and Route Optimizations
We use OpenRoad [4] to place and route Basilisk’s synthe-

sized netlist. We mainly identify possible improvements in the
EDA tool flow (how the individual components of OpenROAD
are invoked) and the physical constraints of the application-
specific integrated circuit (ASIC). We improve the routability
of the design by redesigning the power grid; we reduce the
width and increase the count of the power stripes on the
top metal layer to ease routing congestion underneath the
stripes. Very dense modules with random routing patterns,
such as the boot ROM, were a particular source of issues. As
OpenRoad currently only accepts global (as opposed to region-
or instance-based) settings, we tune several hyper-parameters
of the routability-driven global placement engine to improve
the placement of dense blocks and get a routable design without
design rule check (DRC) violations.

IV. RESULTS

We present the final QoR of Basilisk and quantify our
synthesis and P&R optimizations in relation to a baseline
Yosys-and-OpenROAD flow without improvements.

A. Synthesis
Figure 3 summarizes the cumulative QoR effects of our

synthesis enhancements in an area-time (AT) plot. We time
our netlists in a commercial tool to ensure accurate results
under typical conditions (1.2 V, 25 °C). We compare our work
to a baseline Yosys flow without our optimizations using the
default, speed-optimized ABC script from the OpenROAD flow
scripts; it yields a logic area of 1.8 MGE and a critical path
length of 30 ns (33 MHz).

Our first optimization improving the synthesis of part-selects
(MUX) reduces logic area by 22 % and the critical path length
by 11 %. Building an optimized ABC script that leverages LMS
(ABC) yields the largest QoR improvement, further reducing
area by 21 % and shortening the critical path by another 2.1×.
Finally, using our optimized library of arithmetic units (LAU)
further shortens the critical path by 9 % to 13 ns (77 MHz).
Together, our Yosys optimizations reduce synthesis time from
5.4 h to 2.2 h (2.5×) and peak synthesis RAM usage from
217 GB to 75 GB (2.9×).

Our parametric ABC script and the span of choices in our
library of arithmetic units can provide designers with flexible
control over area-timing tradeoffs, allowing us to generate a
pareto-frontier of multiple designs as shown. While the minimal-
area design we ultimately chose (1.1 MGE, 13 ns) improves
timing by 2.3× and reduces the area by 1.6×, tuning our ABC
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Fig. 3. Area-time plot summarizing the incremental QoR benefits of our
Yosys synthesis optimizations and comparing them to commercial QoR.

script for timing further reduces the critical path to 10.4 ns
(97 MHz) at the cost of notably increased area.

Despite our significant QoR improvements, commercial
synthesisis tools still have a clear edge on multi-million-gate
designs like Basilisk. They achieve their superior QoR through
timing-aware synthesis, tighter integration of elaboration and
optimizations, larger libraries of pre-optimized blocks, and a
stronger emphasis on physically aware synthesis. Nevertheless,
our optimizations take a significant step toward closing the
QoR gap between open-source synthesis and commercial flows;
our best logic area and critical path length are both within
50 % of what a commercial synthesis tool achieves.

B. Place and Route

Figure 4 shows the final Basilisk layout from OpenROAD
without and with our synthesis and P&R QoR optimizations. In
the former (baseline) case, we re-synthesize some problematic
modules including the boot ROM, the CVA6 issue stage, and the
L1 data cache with a commercial tool to avoid an unmanageable
number of DRC violations primarily caused by inefficient part-
select handling in synthesis (See Section III-B).

Our improvements to the physical implementation flow
increase core area utilization from 50 % to 55 % (+10 %)
while reducing local peak routing resource utilization, enabling
OpenROAD to converge to zero DRC violations. When using
only Yosys for baseline synthesis, we reduce the peak routing
resource utilization, found in the boot ROM, from an unfeasible
210 % to 100 %. Tuning OpenROAD’s hyperparameters reduces
routing congestion both on the global and local scale, obviating
most signal routing on the unsuited top metal layers and
resulting in a less clustered floorplan. Overall, we reduce
Basilisk’s die area from 39 mm2 to 34 mm2 (-12 %).

V. CONCLUSION AND OUTLOOK

We present Basilisk, the first end-to-end open-source,
Linux-capable RISC-V SoC taped out in IHP’s open 130 nm
technology. Basilisk features a 64-bit RISC-V core, a fully
digital HyperRAM DRAM controller, and a rich set of IO
peripherals including USB 1.1 and VGA. To tape out Basilisk,
we create a reusable tool pipeline converting its industry-
grade SystemVerilog description to Yosys-readable Verilog. We
also significantly optimize Yosys’ synthesis QoR, improving
Basilisk’s clock speed by 2.3× to 77 MHz and reducing cell
area by 1.6× to 1.1 MGE while also reducing synthesis runtime
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Fig. 4. Basilisk layouts produced by the baseline (a) and optimized flow (b).
The white circle highlights excessive top metal routing (red) in the baseline.

and peak RAM usage by 2.5× and 2.9×, respectively. Finally,
our OpenROAD P&R optimizations enable convergence to
zero DRC violations, improve core area utilization by 10 %,
and reduce die area by 12 %. In future work, we hope to
enhance Basilisk with open-source RoT IPs to also provide
robust cryptographic security and a verified boot chain.
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