
Acceleration of Data Analytics using SVD on
Heterogeneous Supercloud Systems

Georgios Zacharopoulos
Computing Systems Lab

Huawei
Zurich Research Center

Zurich, Switzerland

Ilias Bournias
Computing Systems Lab

Huawei
Zurich Research Center

Zurich, Switzerland

Lukas Cavigelli
Computing Systems Lab

Huawei
Zurich Research Center

Zurich, Switzerland

Abstract—Emerging Heterogeneous Supercloud systems are
redefining data analytics by enabling dynamic scaling and ef-
ficient distribution of tasks across diverse resources. This paper
introduces innovative computational models and performance
estimation techniques tailored for accelerating Singular Value
Decomposition (SVD)-based data analytics on Heterogeneous
Supercloud systems. Our approach optimizes all three phases
of SVD computation, demonstrating a remarkable speedup of
up to 126x compared to a highly optimized 48-core ARM CPU
implementation using LAPACK. This breakthrough illustrates
the significant potential of Heterogeneous Supercloud systems in
advancing data analytics performance.

Index Terms—cloud computing, SVD, data analytics, hetero-
geneous

I. INTRODUCTION

Heterogeneous computing has emerged as a vital paradigm
in modern computing, harnessing a mix of processor types
within a unified system to enhance performance. The concept
of the Supercloud, as introduced by McColl [13], represents
an advanced heterogeneous cloud architecture specifically en-
gineered to meet the demanding processing needs of AI, big
data, and high-performance computing (HPC) applications.

Supervised and unsupervised learning are fundamental to
contemporary machine learning, playing vital roles in pro-
cessing and interpreting complex data sets. A key strategy
to enhance training efficiency for both types of learning
is the reduction of features and dimensions. In supervised
learning, focusing on the most pertinent data features through
feature reduction not only streamlines the learning process but
also curtails model complexity. This approach speeds up the
computations and reduces the likelihood of overfitting. In the
context of unsupervised learning, particularly in applications
like clustering or anomaly detection, dimensionality reduction
techniques such as Principal Component Analysis (PCA) are
employed. PCA simplifies the data set while preserving critical
features, facilitating more efficient data analysis.

Singular value decomposition (SVD) plays a pivotal role in
executing PCA for feature and dimensionality reduction. SVD
identifies the orthogonal axes, or principal components, where
data variation is most significant. These components have
wide-ranging applications, including data visualization, feature
engineering, and noise reduction. By highlighting the most
informative features and compressing the data, SVD-based

PCA significantly boosts the efficiency of both supervised
and unsupervised learning algorithms. This leads to faster
training, better interpretability, and enhanced overall algorithm
performance. Furthermore, SVD finds extensive use in natural
language processing (NLP) tasks [14] and has been a critical
component in advanced recommendation systems, such as the
award-winning Netflix algorithm [8].

Developing an automated methodology that expedites SVD
computations across varied heterogeneous systems is vital
to improving the efficiency of machine learning training
processes. This methodology needs to ensure scalability and
applicability across different systems.

Our key contributions are as follows:
• We investigate two computation models—iterative and

blocked—tailored for automating the mapping of SVD
computations on heterogeneous Supercloud systems.

• We introduce novel performance estimation models that
encompass both computation and communication latency
for each computation model.

• We conduct comprehensive evaluations of all computa-
tion models and their optimizations on a 48-core ARM-
based Huawei Kunpeng CPU [15] and an Ascend 910 AI
hardware accelerator [10], providing insights into their
efficacy and applicability in real-world scenarios.

II. RELATED WORK

Recent years have seen increased interest in leveraging
heterogeneous systems for accelerating SVD computations [5],
[11]. Typically, these approaches divide the SVD process into
two stages, optimizing the use of heterogeneous resources.

The initial task involves transforming a full matrix into a
bidiagonal form. Faverge et al. [3] investigate tiled algorithms
for this transformation, focusing on orthogonal transformations
and providing a critical path analysis for each algorithm. Ltaief
et al. [12] explore the influence of tile size on execution time,
linking it to the matrix bandwidth size post-reduction. They
use a brute force mechanism to retrieve the optimal tile size
of a specific problem size. It is also pointed out that the
optimal tile size is not the same for every sub-task of the
problem. Gates et al. [5] develop a 2-stage reduction algorithm
to transform a full matrix to a bidiagonal one, accelerating
the process by offloading matrix multiplications to GPUs and



Band to 
Bidiagonal

Full to 
Band

QL QR QL
~

A B B

D&C

QR

~

~ VBQRQLUB H

Σ

Fig. 1: 2-stage reduction to bidiagonal form followed by
Divide and Conquer (D&C) SVD.
overlapping them with LQ and QR computations on the CPU.
However, these studies lack automated tools for performance
estimation based on hardware resources and granularity level
to achieve maximum throughput.

Additionally, compiler-based methodologies have been in-
troduced for performance estimation in heterogeneous systems
[16], [17], focusing on general approaches and specific paral-
lelism types [18], however not addressing diverse computation
models. Design space exploration (DSE) methods have also
been explored [2], [4], focusing on strategies for synthesizing
accelerators and implementing optimizations.

III. ACCELERATED SVD FOR HETEROGENEOUS SYSTEMS

The traditional SVD algorithm employs a 1-stage reduction
to bidiagonal form, relying on matrix-vector multiplications.
This approach is often hindered by limited memory band-
width, adversely affecting performance. To address this issue,
a 2-stage reduction algorithm to bidiagonal form has been
proposed [5], among others. As illustrated in Figure 1, this
algorithm reduces the matrix to a band form utilizing high-
performance Level 3 BLAS functions, followed by reducing
the band matrix to bidiagonal form using cache-optimized
kernels with dynamic scheduling.

The SVD of an m×n matrix A is defined as A = UΣV H .
Here, U and V are unitary matrices, and Σ is a real diagonal
matrix with non-negative elements σi, which represent the
singular values of A. The first min(m,n) columns of U and V
constitute the left and right singular vectors of A, respectively.
The Golub–Kahan–Reinsch algorithm [6], [7] performs SVD
in three steps:

1) Bidiagonalization: Transform A into a bidiagonal ma-
trix B such that A = QLBQR with QL, QR unitary
matrices,

2) Bidiagonal SVD: Employ QR or Divide and Conquer
methods [9] to obtain B = UBΣV

H
B ,

3) Extraction of singular vectors with back-transformation,
A = QLBQR = QLUBΣV

H
B QR = UΣV H .

A. 2-Stage Bidiagonalization

The 2-stage reduction process begins by converting the full
matrix into an upper band form, then further reducing it to
upper bidiagonal. Specifically,

A = Q̃LB̃Q̃R = Q̃LQ̂LBQ̂RQ̃R = QLBQR,

with all matrices Q unitary, B̃ the upper band matrix, and B
the upper bidiagonal matrix.

1) Full-to-Band: The first phase involves transforming the
matrix to band form, crucially removing data dependencies
with the trailing matrix during panel factorization. This is
key to overcoming the bottleneck caused by matrix-vector
operations in the panel.

The procedure involves a QR panel factorization of a block
column to remove entries below the diagonal, followed by an
update of the trailing matrix. This is succeeded by an LQ panel
factorization of a block row to eliminate entries right of the
upper band width of the matrix, and then another update of
the trailing matrix.

2) Band-to-Bidiagonal: In the second stage, the upper
band matrix is further reduced to upper bidiagonal form. Due
to the limited parallelism, memory bandwidth constraints, and
the need for CPU cache optimizations, using accelerators for
this stage offers only marginal benefits. Hence, this stage’s
computations are primarily performed on the host CPU. It is
important to note that the bulk of the computational work
occurs in the initial stage (from full to band form), which
consequently lessens the computational load in this later stage.

B. Divide and Conquer (D&C)

The D&C algorithm is employed for computing the SVD of
a bidiagonal matrix B after its transformation into bidiagonal
form. The matrix B is divided into two bidiagonal submatrices,
B1 and B2, as illustrated below (ek is the k-th column of an
identity matrix). On each sub-matrix, the SVD is computed
separately:

B =

(
B1 αkek 0
0 βke1 B2

)
, Bi =

(
Qi qi

)(Σi

0

)
WH

i .

The D&C algorithm is recursively applied to B1 and B2 and
their subsequent sub-matrices. However, at a certain recursion
depth, the D&C algorithm becomes less beneficial due to
excessively fine granularity, leading to the employment of a
classic QR SVD approach for bidiagonal matrices [5].

C. Back-Transformation of Singular Vectors

To derive the singular vectors of matrix A, a three-stage
back-transformation process is essential. The initial stage
originates from the full matrix to band matrix reduction, where
the block Householder reflectors, utilized in the band reduction
and stored in compact WY format, are multiplied [5]. The
second stage processes he matrices resulting from the band-to-
bidiagonal transformation. The final stage utilizes UB and V H

B ,
the singular vectors of B, for the last back-transformation.

IV. MODELS OF COMPUTATION

Our objective is to enhance the efficiency of all three
stages of the SVD algorithm: bidiagonal reduction, D&C
bidiagonal SVD, and back-transformation of singular vectors.
We leverage optimized BLAS and Lapack functions [1] for
the host CPU and accelerate parallelizable tasks in each stage.

We investigate two primary models of computation, each
tailored to break down the SVD problem into tasks suitable
for offloading to accelerators with varying granularity levels:



TS

CH

CH

TS

QR
QR CH

QR CH

TS

QR
LQ

LQ LQ

TS

CH

CH

TS

QR
QR CH

QR CH

TS

QR
LQ

LQ LQ

Fig. 2: Iterative (top) and Blocked (bottom) models for 2-stage
SVD (Iteration: 0, 1, 2 and 3 Refinement Level: 1, 2, 4 and 8
respectively). Each dark grey rectangle (square) represents the
area of gemm computation that is offloaded to an accelerator.
The white rectangles of QR and LQ represent the part of the
computation that remains in the host CPU.

TS

CH

CH

TS

QRCH
QR

QR QR

LQ

LQ

LQ

TS

CH

CH

TS

QRCH

QR QR

LQ

LQ

LQACC1

ACC3

ACC2

QR

Fig. 3: The critical path of Iterative (top) and Blocked (bottom)
models for 2-stage SVD (Refinement: 4). Dependencies are
annotated with black arrows.
a) the iterative model and b) the blocked model for the first
SVD stage (bidiagonalization).

A. Bidiagonalization

1) Iterative: The iterative approach to 2-stage bidiagonal-
ization is depicted in Figure 2. For clarity, we illustrate only
the first panel of the bidiagonalization process at each iteration
or level of refinement. The concept of “refinement” here refers
to a task’s decomposition level, allowing for progressively
finer granularity with each iteration.

We define the Refinement Level for iteration i ∈
{0, . . . , N} as r(i) = 2i. For each iteration i of the bidiag-
onalization decomposition/refinement, the dimensions of the
initial QR matrix n × n (at i = 0) are halved from the size
of the preceding iteration (thus, n × n/2 for i = 1, n × n/4
for i = 2, and so on).

The decision to proceed to the next refinement stage is
based on a performance-related condition. This condition
is applied only if advancing to the next refinement level
i + 1 is projected to enhance performance. The following
inequality quantitatively defines the criterion for proceeding
with refinement in the iterative model of bidiagonalization:

r(i+1)−1∑
j=0

t
(i+1,j)
QR + t

(i+1)
BD <

r(i)−1∑
j=0

t
(i,j)
QR + t

(i)
BD

where t
(i,j)
QR represents the latency of the task QR for iteration

i, and t
(i)
BD is the latency of bidiagonalization. For exam-

ple, Figure 2 demonstrates the computational equivalence for

refinement levels 1 (no decomposition), 2, 4, and 8. With
increasing refinement, the computational load of gemm tasks
(depicted as dark grey rectangles) also increases, providing
more opportunities for acceleration through offloading to avail-
able hardware resources.

Notably, the more computation is executed in the first stage
(full-to-band), the less computational effort is needed in the
second stage (band-to-bidiagonal), which mainly takes place
on the host CPU and is not as amenable to acceleration.
Therefore, our goal is to offload most of the computational
load required for bidiagonalization to the first stage, thus
expediting the overall process.

To estimate the computation and communication latencies in
a heterogeneous Supercloud architecture, the following models
are used:

t(i)comp =

r(i)−1∑
j=0

t
(i,j)
QR +

r(i)−2∑
j=0

t
(i,j)
LQ +

r(i)−2∑
j=0

N−1∑
k=0

t(i,j,k)gemm,

t(i)comm =

r(i)−2∑
j=0

N−1∑
k=0

(
t
(i,j,k)
comm,H2D + t

(i,j,k)
comm,D2H

)
.

2) Blocked: Several advantages emerge in the blocked
approach, applied after fine-tuning the refinement level and
computation granularity for accelerator offloading. These in-
clude a) improved load balancing, b) optimized hardware
accelerator utilization, c) enhanced scheduling capabilities,
and d) potential task overlapping, aligning computation closer
to the theoretical critical path for peak performance.

The computation and communication latency for a hetero-
geneous Supercloud in the blocked model are estimated as
follows:

t(i)comp =

r(i)−1∑
j=0

t
(i,j)
QR +

r(i)−2∑
j=0

t
(i,j)
LQ

+

r(i)−2∑
j=0

(r(i)− j − 1)
2 · t(i,j)gemm,

t(i)comm =

r(i)−2∑
j=0

N−1∑
k=0

(
t
(i,j,k)
comm,H2D + t

(i,j,k)
comm,D2H

)
.

3) Blocked optimized: This variant of the blocked approach
allows the use of multiple accelerators for simultaneous com-
putation of gemm(i) tasks. As shown in Figure 3, a parallel
implementation requires at least r(2) − 1 = 3 accelerators to
match the theoretical critical path. The performance model for
the parallel blocked approach is given by:

t(i)comp =

r(i)−1∑
j=0

t
(i,j)
QR +

r(i)−2∑
j=0

t
(i,j)
LQ + (r(i)− 1) · r(i)

2
· t(i)gemm.

V. EXPERIMENTAL SETUP

Our methodology and computation models were evaluated
using a setup emulating the hardware resources of a heteroge-
neous Supercloud. The hardware configuration includes a 48-
core ARM CPU, specifically the Huawei Kunpeng 920 [15],
paired with a Huawei Ascend 910 AI processor [10], which



 0

 100

 200

 300

 400

 500

 600

 700

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y 

(s
ec

s)

Refinement

ASCEND
COMM

CPU-QR
CPU-LQ

CPU-SUM

Fig. 4: First stage of bidiagonalization (full-to-band): Latency
of the gemm computation offloaded to the Ascend AI acceler-
ator, communication between accelerator and host, and CPU
time as the refinement increases.

 20

 40

 60

 80

 100

 120

2 4 8 16 32 64 128 256 512 1024

S
pe

ed
up

Refinement

iterative blocked blocked-opt

Fig. 5: Speedup obtained for SVD bidiagonalization increasing
the refinement. Comparison of the iterative, blocked, and
blocked-opt. (parallel) models.

features 32 Da Vinci AI cores capable of reaching a peak
performance of 320 TFLOPS. Communication between these
devices is facilitated via a PCIe link. For comparison, the CPU
implementations in our experiments are multi-threaded, fully
optimized SVD functions and subroutines from LAPACK [1].

VI. EXPERIMENTAL RESULTS

We present results for all three SVD computation stages
(bidiagonalization, D&C, and back-transformation) using iter-
ative, blocked, and recursive models, tailored to each stage’s
requirements. The overall speedup achieved by integrating the
most effective strategies for each stage is compared to a fully
optimized multi-core CPU implementation. The input for these
experiments is a square matrix of size 32000, resulting in
320002 entries. Our study examines the effects of refining task
granularity and distribution, while offloading more computa-
tion to the first stage of the 2-stage bidiagonalization process.

Figure 4 illustrates the computation and communication
dynamics between the CPU and the accelerator during the first
bidiagonalization stage. We observe a gradual decrease in the
host CPU’s processing time, while the latency on the Ascend
AI accelerator and communication overhead surpass the CPU
time only at refinement levels 128 and 256. Beyond these
levels, communication costs and accelerator latency increase
exponentially, whereas CPU time plateaus.

Figure 5 compares the speedup of the overall bidiagonaliza-
tion phase across the iterative, blocked, and blocked optimized
models. Each model employs the Ascend AI accelerator(s) in
conjunction with the host CPU, benchmarked against a fully
optimized LAPACK 48-core ARM CPU version. The peak

performance, with speedups of 116x and 126x, is observed at
refinement levels 128 and 256 in the optimized parallel version
of the blocked model. Beyond these levels, performance de-
clines sharply due to the escalating latencies of AI accelerators
and communication costs, while CPU time remains stable.

VII. CONCLUSIONS

Our study introduces novel models for performance esti-
mation and explores computation models to accelerate SVD-
based data analytics on heterogeneous Supercloud systems. By
automating task mapping, scheduling and parallelization, our
methodology achieves up to an 126x speedup on a system
comprising a 48-core ARM CPU and an Ascend accelerator.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, third edition, 1999.

[2] Iulian Brumar et al. Early DSE and automatic generation of coarse
grained merged accelerators. ACM Trans. Embed. Comput. Syst., 2022.

[3] Mathieu Faverge, Julien Langou, Yves Robert, and Jack Dongarra. Bidi-
agonalization and r-bidiagonalization: Parallel tiled algorithms, critical
paths and distributed-memory implementation. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2017.

[4] Lorenzo Ferretti et al. Graph neural networks for High-Level Synthesis
Design Space Explor. ACM Trans. on Des. Autom. of Electr. Syst., 2022.

[5] Mark Gates, Stanimire Tomov, and Jack Dongarra. Accelerating the
SVD two stage bidiagonal reduction and divide and conquer using gpus.
Parallel Computing, 74:3–18, 2018.

[6] Gene Golub and William Kahan. Calculating the singular values and
pseudo-inverse of a matrix. Journal of the Society for Industrial and
Applied Mathematics, 2(2):205–224, 1965.

[7] Gene H Golub and Christian Reinsch. Singular value decomposition
and least squares solutions. In Handbook for Automatic Computation:
Volume II: Linear Algebra, pages 134–151. Springer, 1971.

[8] Stephen Gower. Netflix prize and SVD. University of Puget Sound,
2014.

[9] Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for
the bidiagonal svd. SIAM Journal on Matrix Analysis and Applications,
16(1):79–92, 1995.

[10] Heng Liao et al. Ascend: a scalable and unified architecture for
ubiquitous deep neural network computing. In HPCA, 2021.

[11] Ding Liu, Ruixuan Li, David J. Lilja, and Weijun Xiao. A divide-
and-conquer approach for solving singular value decomposition on
a heterogeneous system. In Proceedings of the ACM International
Conference on Computing Frontiers, New York, NY, USA, 2013.

[12] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High-performance
bidiagonal reduction using tile algorithms on homogeneous multicore
architectures. ACM Trans. Math. Softw., 39(3), may 2013.

[13] Bill McColl. Superclouds: Scalable high performance nonstop infras-
tructure for AI and smart societies. In SCITA. Springer, 2017.

[14] Kaiz Merchant and Yash Pande. NLP based latent semantic analysis for
legal text summarization. In 2018 international conference on advances
in computing, communications and informatics (ICACCI), pages 1803–
1807. IEEE, 2018.

[15] Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun.
Kunpeng 920: The first 7-nm chiplet-based 64-core arm soc for cloud
services. IEEE Micro, 41(5):67–75, 2021.

[16] Georgios Zacharopoulos et al. Compiler-assisted selection of hardware
acceleration candidates from application source code. Proceedings of
the International Conference on Computer Design, pages 1–9, 2019.

[17] Georgios Zacharopoulos et al. RegionSeeker: Automatically identifying
and selecting accelerators from application source code. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[18] Georgios Zacharopoulos et al. Trireme: Exploration of hierarchical
multi-level parallelism for hardware acceleration. ACM Trans. Embed.
Comput. Syst., 22(3), apr 2023.


	Introduction
	Related Work
	Accelerated SVD for Heterogeneous Systems
	2-Stage Bidiagonalization
	Full-to-Band
	Band-to-Bidiagonal

	Divide and Conquer (D&C)
	Back-Transformation of Singular Vectors

	Models of Computation
	Bidiagonalization
	Iterative
	Blocked
	Blocked optimized


	Experimental Setup
	Experimental Results
	Conclusions
	References

