
ReDSEa: Automated Acceleration of Triangular
Solver on Supercloud Heterogeneous Systems

Georgios Zacharopoulos
Computing Systems Lab

Huawei
Zurich Research Center

Zürich, Switzerland

Ilias Bournias
Computing Systems Lab

Huawei
Zurich Research Center

Zürich, Switzerland

Verner Vlačić
Computing Systems Lab

Huawei
Zurich Research Center

Zürich, Switzerland

Lukas Cavigelli
Computing Systems Lab

Huawei
Zurich Research Center

Zürich, Switzerland

Abstract—When utilized effectively, Supercloud heterogeneous
systems have the potential to significantly enhance performance.
Our ReDSEa tool-chain automates the mapping, load balancing,
scheduling, parallelism, and overlapping processes for the Trian-
gular System Solver (TS) on a heterogeneous system consisting
of a Huawei Kunpeng [8] ARM multi-core CPU and an Ascend
910 [3] AI HW accelerator. We propose an LLVM compiler tool-
chain that a) leverages compiler analysis and b) utilizes novel
performance models exploring recursive, iterative, and blocked
computation models. Our tool-chain facilitates a speedup of up to
16x compared to an optimized 48-core CPU-only implementation.

Index Terms—heterogeneous systems, accelerators, compiler,
automation, DSE, cloud computing

I. INTRODUCTION

Heterogeneous computing aims to exploit the strengths of
diverse processor types and architectures to achieve superior
performance, power efficiency, and cost-effectiveness than a
homogeneous, general purpose CPU-based system. The term
Supercloud [4] has been used to describe the next generation of
the cloud architectures where demanding processing of AI, big
data and HPC applications can be supported. In a large-scale
heterogeneous computing environment, such as a Supercloud,
high-speed interconnects enable different processors to col-
laborate efficiently using software to distribute and coordinate
workloads at various levels of granularity, ranging from low-
level hardware acceleration to high-level task scheduling and
load balancing.

However, designing complex Supercloud heterogeneous
systems poses significant challenges that are both time-
consuming and demanding. Engineers must carefully consider
physical resource constraints, communication costs, and other
factors when deciding which portions of an application should
be accelerated on GPUs or hardware accelerators (including
TPUs, DPUs, etc.) and which should run on general purpose
CPUs. Moreover, applications in many relevant domains,
e.g., Deep Learning, Extended Reality (XR) or Autonomous
Vehicles, offer opportunities for various forms of parallel
execution, including Instruction Level (ILP), Task Level (TLP)
and Pipeline (PP) Parallelism.

These different forms of parallelism, if harnessed for hard-
ware acceleration, can result in significant speedups. Thus,
a Design Space Exploration (DSE) methodology based on
performance estimation models can be crucial. It can (a) utilize

all the forms of parallelism mentioned above, (b) be driven
directly by the application source code or a graph repre-
sentation of a computation model (e.g., recursive, iterative,
and blocked), (c) automatically determine the parts of the
application that should be accelerated in hardware, and (d)
carry out performance estimation.

II. RELATED WORK

Monil et al. [5] introduce LaRIS, a portable framework for
LAPACK functionalities on Heterogeneous Systems. LaRIS
uses IRIS [5] to dynamically select the vendor-library kernel
and suitable processor architecture at run-time, making the
orchestration simpler when different architectures coexist in
a single node. Valero-Lara [7] evaluates the use of OpenMP
tasking with target GPU offloading as a potential solution for
programming productivity and performance on heterogeneous
systems. As a test case, the Triangular Solver (TS) routine is
used. In both the aforementioned works, there is not a model to
determine the refinement level and the expected performance.

In [6], the authors introduce ReLAPACK, a methodology
that makes use of recursive algorithms in order to implement
LAPACK functionalities. They claim that, contrary to blocked
algorithms, recursive algorithms do not require significant
tuning to define the proper granularity/refinement level. Con-
versely to our work, they target shared memory architectures
and not heterogeneous systems.

III. COMPILER TOOL-CHAIN

To address all the challenges mentioned in the previ-
ous section, we present ReDSEa (Recursive Design Space
Exploration Automation): A tool-chain based on the LLVM
[2] Compiler Infrastructure (Version 14.0.0).

A. Compiler Analysis

The first stage of our methodology is analyzing the ap-
plication that is going to be mapped to a heterogeneous
system or cloud architecture. The analysis phase includes an
automated process that provides our compiler infrastructure
with necessary information so as to guide the subsequent
steps (Cost Models and Design Space Exploration) of the
automation methodology. It can be viewed as the input to our
automated system. The analysis is performed by generating



the respective LLVM-IR from the application source code
(typically written in C, C++). A number of LLVM analysis
passes, developed within the scope of ReDSEa, analyze the
intermediate representation of the applications and estimate
the latency due to computation of every potential task, or
otherwise described, of every node of the data flow graph.
Furthermore, the communication cost is estimated by extract-
ing the amount of data that is read and stored by every task.
The data requirements, along with the available bandwidth of
a target architecture, allows for an estimation of the latency,
due to communication.

B. Cost Models

To obtain an early evaluation of the potential performance
of every computational node, we need to introduce evalua-
tion/cost models that can perform estimations of both com-
putation and communication latency for the components of a
Supercloud heterogeneous system, such as CPUs, GPUs, HW
accelerators, etc.

To estimate the latency of a computational node that is
mapped to multiple CPUs, GPUs and/or HW accelerators,
we need to estimate 1) the latency of the computation on
the CPUs, 2) the critical path of the computation that is
offloaded to GPUs and/or HW accelerators, 3) the latency
to transfer the data from the host main memory to the HW
accelerator (Host-to-Device, H2D) and vice versa (Device-
to-Host, D2H), and 4) the synchronization/invocation over-
head. Latency = CPUComputation+HWComputation+
Communication+ Synchronization/Invocation

Let S = {S1, S2, . . . , SN} be a set of nodes (tasks), with as-
sociated HW computation latency (HWcompi), HW commu-
nication latency (HWcommi) and synchronization/invocation
overhead (OVHDi). For every node i the cumulative latency
will be HWi = HWcompi + HWcommi + Synchi | i =
1, . . . , N .

C. Design Space Exploration

Based on the cost models of the previous subsection, a list of
candidates for acceleration is generated. The selection (branch-
and-bound) algorithm recursively explores the subsets of the
list of candidates, in a similar manner to the Bron-Kerbosch
algorithm [1]. The output returned is the set with the highest
speedup (minimum cumulative latency) that stays within the
user defined resource budget, which is translated as the amount
of resources available for hardware acceleration.

IV. TRIANGULAR SYSTEM SOLVER

Solving Triangular Systems is a fundamental problem from
the dense linear algebra domain. In this example, we solve
the linear system Lx = b, where L is a dense lower-triangular
n× n matrix and b is a dense vector of length n.

The solution to this problem, in order to explore multiple
levels of granularity, relies on dividing b into an upper and a
lower half and the matrix L into matrices L.up, L.mid, and
L.low corresponding to the upper left, lower left, and lower
right blocks of L, as seen in Figure 1. L.up, L.low are dense

Fig. 1. Data Flow Graph (DFG) of the recursive implementation of triangular
system solver TS<n> and its refined (decomposed) nodes TS<n/2> and the
matrix-vector multiplication update mxv<n/2,n/2>.

lower-triangular n/2×n/2 matrices and L.mid is a full dense
n/2×n/2 matrix. With this analysis, the system can be solved
in 3 stages:

1) Solve the triangular system (L.up)(x.up) = b.up
2) Update b.low = b.low − (L.mid)(x.up)
3) Solve the triangular system (L.right)(x.low) = b.low

The solution to the original system is x = (x.up, x.low).
We extend the problem by solving n linear systems for n

different b vectors of size n while keeping the same L lower-
triangular (n× n) matrix.

V. MODELS OF COMPUTATION

Three models of computation are explored within the scope
of this work: Recursive, as seen in [6], Iterative and Blocked.

A. Recursive

The recursive model of computation offers a decomposition
of the initial problem to several tasks, as shown in Figure
1. It also provides the opportunity to expose parallelism and
finally to explore various levels of granularity in order to
make the best architectural decisions and use efficiently any
given available software (general purpose CPUs) and hardware
accelerators resources.

In the example of the Triangular System (TS), the initial
problem of size n is decomposed to the tasks: TS<n/2>,
general matrix-vector multiplication gemv<n/2,n/2> and
TS<n/2>, along with the respective dependencies. The gemv
task offers data level parallelism and, hence, can be an
excellent candidate to be accelerated. As we solve n instances
of TS for n vectors of b, the gemv task becomes a matrix-
matrix multiplication task and the second stage of the problem
is transformed to a general matrix multiplication (gemm) task.

The refined TS<n/2> tasks can be refined as well, so as
to expose more parallelism and accelerate a larger part of
the initial TS<n>. For every iteration i of the decomposi-
tion/refinement of TS, the size of the initial matrix n × n
(i = 0) is decreased to a quarter of the previous iteration (e.g.
n/2× n/2 for i = 1, n/4× n/4 for i = 2 etc.).



Fig. 2. Recursive model for Triangular System Solver (Iteration: 0, 1, 2 and
3 Refinement Level: 1, 2, 4 and 8). Each grey rectangle (square) represents
the gemm computation that is offloaded to an accelerator. The white triangles
represent the part of the computation (TS) that remains in the host CPU.

The next refinement stage is applied only if it benefits
performance, i.e., if the following condition is satisfied:
2× TS(i+ 1) < TS(i) | i = 0, . . . , N
We define as r(i) the Refinement Level of iteration i.

r(i) = 2i | i = 0, . . . , N (1)

The models that estimates the performance, i.e., computation
and communication latency, on a heterogeneous architecture
are described by the following formulas:

Comp(i) = r(i)× TS(i) +
∑i−1

j=0 r(j)× gemm(j)

Comm(i) =
∑i−1

j=0 r(j)× Comm(H2D+D2H)(j)

B. Iterative

Once the granularity of the TS computation that remains on
the host has been determined, an iterative model of computa-
tion could be offered as an alternative.
There are two main reasons to favor an iterative approach over
a recursive one: a) It can offer better utilization of the acceler-
ators that are available, as fewer accelerators are dedicated to
compute relatively smaller parts of the computation compared
to a recursive one which allocates smaller and smaller parts of
the computation to be computed by the HW accelerators. b)
It demands less engineering effort to be implemented while at
the same time the performance is not sacrificed, but instead it
is kept equal, or slightly better, compared to a recursive one.

The models that estimate the expected performance and
communication cost of the iterative approach are:

Comp(i) = r(i)× TS(i) +
∑r(i)−2

j=0 gemm(i, j)

Comm(i) =
∑r(i)−2

j=0 (CommH2D(j) + CommD2H(i))

C. Blocked

A blocked approach, as seen in Figure 4, can be used once
the level of refinement and granularity of the TS computations
that reside at the host CPU has been determined.

The advantages of a blocked model, compared to a recursive
or an iterative one, are better overall load balancing, more effi-
cient use of HW accelerators resources, and better scheduling.

The workflow of the blocked model (Figure 5) allows a
computation in rounds offloading equivalent workloads for the
acceleration of gemm in every round and using the available
resources efficiently.

Fig. 3. Iterative model for Triangular System Solver (Iteration: 0, 1, 2 and 3
Refinement Level: 1, 2, 4 and 8). Each grey rectangle represents the gemm
computation that is offloaded to an accelerator. The white triangles represent
the part of the computation (TS) that remains in the host CPU.

1 2 4 8
Fig. 4. Blocked model for Triangular System Solver (Iteration: 0, 1, 2 and
3 Refinement Level: 1, 2, 4 and 8). Each grey rectangle (square) represents
the gemm computation that is offloaded to an accelerator. The white triangles
represent the part of the computation (TS) that remains in the host CPU.

For every iteration i and a respective refinement level r(i),
the number of rounds of computation is r(i) − 1 and the

blocks of computation is
r(i)

2
per round, so at to have equal

workloads per round. Also, the partitioning of the computation
into blocks unlocks the potential for parallelism execution
with multiple accelerators, requiring less engineering effort
compared to the previous models, and it unlocks the option to
overlap the acceleration of gemm with the CPU computation
of TS.

Thus, the total number of blocks (gemm(i) computations)

to be accelerated are (r(i)−1)× r(i)

2
(rounds of computation

multiplied by the blocks of computation per round). In the
example of Figure 5, the total number of blocks is 7× 4 = 28.

The models that compute the expected performance and
communication cost of the blocked approach are:

Comp(i) = r(i)× TS(i)+((r(i)−1)× r(i)

2
)× gemm(i)

Comm(i) = ((r(i)− 1)× r(i)

2
)× Comm(H2D+D2H)(i)

1 2 3 4

5 6 7
Fig. 5. Workflow in seven rounds of computation for the blocked model of
Triangular Solver (Refinement: r(3) = 8, Rounds: r(3) − 1 = 7, Blocks:
r(3)

2
= 4 ).



 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64 128

La
te

nc
y 

(s
ec

s)

Refinement

48 24 12

 0

 5

 10

 15

 20

2 4 8 16 32 64 128

S
pe

ed
up

Refinement

48 24 12

Fig. 6. Latency (top) and Speedup (bottom) obtained for Triangular System
(TS) Solver increasing the refinement level and gradually offloading more of
the initial computation to the Ascend device. The computation remaining in
the host CPU was computed using 48, 24 and 12 cores respectively.

VI. EXPERIMENTAL RESULTS

Our experimental setup consists of a general purpose 48-
core ARM CPU (Huawei Kunpeng [8]) and a Huawei Ascend
910 AI processor [3], that consists of 32 Da Vinci AI cores
with a peak performance of 320 TFLOPS. The two devices
communicate via a PCIe bus. The results are equivalent for all
three computation models explored. In Figure 6 (top) the total
latency of every heterogeneous design can be seen while the
refinement level increases and while using either all available
CPU resources (48 cores), half of them (24 cores) or finally 12
of the available CPU cores. By increasing the refinement level,
hence offloading a larger part of the computation to Ascend,
significant time can be saved even when using fewer CPU
cores, e.g., with refinement equal to 32 and 12 CPU cores.

The respective speedup over an optimized CPU-only base-
line, showcased in Figure 6 (bottom) can be up to a com-
pelling 16x using 48 CPU cores (refinement=64). However, the
speedup decreases with the next iteration of refinement (128),
which also employs finer granularity. This is due to two main
factors: a) The CPU-residing part of the TS computation is so
fine-grained that it cannot be executed faster than the previous
iteration. So, the condition 2 × TS(i + 1) < TS(i) | i =
0, . . . , N , as defined in Section V-A is not satisfied and the
refining process ends. This can be observed in Figure 7, where
the CPU latency (48 cores) of the last refinement iteration
(128) is larger than the previous iteration. b) The commu-
nication cost raises substantially while refinement increases.
The communication latency between the CPU host and the
Ascend device at the last two refinement iterations (64 and
128) surpasses the cost of the CPU computation resulting in
significant overhead and halts the potential for more speedup.

VII. CONCLUSIONS

Using the ReDSEa tool-chain, which incorporates perfor-
mance models derived from recursive, iterative, and blocked

 0

 2

 4

 6

 8

 10

 12

8 16 32 64 128

La
te

nc
y 

(s
ec

s)

Refinement

ASCEND COMM ARM-CPU SUM

Fig. 7. Latency of Ascend accelerator computation, host-to-device and device-
to-host communication, ARM CPU (48 cores) computation and their sum.

computation models, we have managed to automatically map
the Triangular Solver (TS) onto a heterogeneous system,
consisting of a Kunpeng 48-core ARM CPU and an Ascend
AI accelerator device, achieving up to a 16x speedup. We
have explored three models of computation with an emphasis
on the blocked approach to minimize HW acceleration times
compared to the recursive and iterative versions.

VIII. FUTURE DIRECTIONS

Our objective is to investigate the potential of parallelism
and overlapping in the blocked model, aiming to showcase
their impact on the overall latency and speedup achieved by the
respective designs. We also plan to extend this methodology to
other applications in the HPC and AI domains, such as Dense
Cholesky Factorization, QR Matrix Factorization, and others.
Developing new models or extending existing ones will be
necessary to estimate the performance of more applications.
Finally, we aim to apply this methodology to more complex
heterogeneous and Supercloud architectures.

REFERENCES

[1] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. In Communications ACM, volume 9, pages 575–577,
1973.

[2] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the 2nd
International Symposium on Code Generation and Optimization, pages
75–88, March 2004.

[3] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and
Yuxing Hu. Ascend: a scalable and unified architecture for ubiquitous
deep neural network computing : Industry track paper. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 789–801, 2021.

[4] Bill McColl. Superclouds: Scalable high performance nonstop infras-
tructure for ai and smart societies. In International Conference on Smart
Cities, Infrastructure, Technologies and Applications, pages 3–5. Springer,
2017.

[5] Mohammad Alaul Haque Monil, Narasinga Rao Miniskar, Frank Y. Liu,
Jeffrey S. Vetter, and Pedro Valero-Lara. Laris: Targeting portability
and productivity for lapack codes on extreme heterogeneous systems
by using iris. In 2022 IEEE/ACM Redefining Scalability for Diversely
Heterogeneous Architectures Workshop (RSDHA), pages 12–21, 2022.

[6] Elmar Peise and Paolo Bientinesi. Algorithm 979: Recursive algorithms
for dense linear algebra—the relapack collection. ACM Trans. Math.
Softw., 44(2), sep 2017.

[7] Pedro Valero-Lara, Jungwon Kim, Oscar Hernandez, and Jeffrey Vetter.
Openmp target task: Tasking and target offloading on heterogeneous
systems. In Euro-Par 2021: Parallel Processing Workshops, pages 445–
455, 2022.

[8] Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun.
Kunpeng 920: The first 7-nm chiplet-based 64-core arm soc for cloud
services. IEEE Micro, 41(5):67–75, 2021.


	Introduction
	Related Work
	Compiler Tool-chain
	Compiler Analysis
	Cost Models
	Design Space Exploration

	Triangular System Solver
	Models of Computation
	Recursive
	Iterative
	Blocked

	Experimental Results
	Conclusions
	Future Directions
	References

