
Protego: A Low-Overhead Open-Source
I/O Physical Memory Protection Unit for RISC-V

Nils Wistoff
Integrated Systems Laboratory

ETH Zürich
Zürich, Switzerland

nwistoff@iis.ee.ethz.ch

Robert Balas
Integrated Systems Laboratory

ETH Zürich
Zürich, Switzerland
balasr@iis.ee.ethz.ch

Andreas Kuster
WANDS

Nanyang Technological University
Singapore, Singapore
mail@andreaskuster.ch

Moritz Schneider
Institute of Information Security

ETH Zürich
Zürich, Switzerland

moritz.schneider@inf.ethz.ch

Michael Rogenmoser
Integrated Systems Laboratory

ETH Zürich
Zürich, Switzerland

michaero@iis.ee.ethz.ch

Luca Benini
Integrated Systems Laboratory

ETH Zürich and University of Bologna
Zürich, Switzerland
lbenini@iis.ee.ethz.ch

Abstract—Physical memory protection is a hardware mecha-
nism designed to prevent unauthorized access to specific memory
regions, enabling the deployment of Trusted Execution En-
vironments (TEEs). The RISC-V instruction set architecture
specifies PMP for RISC-V cores but leaves other system bus
masters as found in heterogeneous computing systems out of
scope. This work presents Protego, an open-source I/O physical
memory protection (IOPMP) unit based on the RISC-V PMP
specification that extends PMP to other system bus masters.
We demonstrate that Protego is effective in protecting sensitive
data in memory and preventing unauthorized access at small
hardware costs of below 40 kGE for a 64-bit system and negligible
performance impact, making it a valuable tool for creating TEEs
in heterogeneous computing systems.

Index Terms—security, heterogeneous computing, physical
memory protection, trusted execution environment, RISC-V

I. INTRODUCTION

As computing systems become more complex and multi-
functional, the potential for bugs and security vulnerabilities
increases with an ever-growing software stack. Additionally,
these systems are frequently entrusted with confidential infor-
mation while simultaneously executing tasks of varying levels
of trustworthiness.

A widely-employed strategy to address this threat is min-
imizing the trusted code base as much as possible. This
objective can be accomplished through utilizing trusted ex-
ecution environments (TEE) that rely on hardware-supported
memory protection in order to isolate an execution environ-
ment from a potentially untrustworthy operating system (OS).
The RISC-V privileged specification [1] describes support
for a memory protection mechanism called physical memory
protection (PMP), and several RISC-V implementations have
incorporated it into their designs [2].

This work has been supported in part by ‘Fractal’ project under grant
agreement No 877056 that receives funding from ECSEL-JU as part of the EU
Horizon 2020 research and innovation programme, and in part by the ETH4D
Humanitarian Action Challenges Application on “Secure Infrastructure for
Humanitarian Organizations”.

In a heterogeneous computing system, other system bus
masters besides RISC-V cores may co-exist. For instance,
these could be direct memory access (DMA) engines, other
accelerators, non-RISC-V-compliant processors, or off-chip
master ports. The existing RISC-V PMP specification does not
apply to such devices. Therefore, the RISC-V community has
proposed and discussed an I/O physical memory protection
unit (IOPMP), which imposes memory protection rules for
such peripheral devices [3]. Figure 1 illustrates such a system
configuration.

In this work, we present Protego, an open-source IOPMP
unit for the RISC-V ecosystem implemented in SystemVerilog.
We demonstrate its effectiveness in protecting system memory
from unauthorized access by all masters in the system and
show that Protego has a low hardware overhead while not
impacting the overall system performance.

The remainder of this paper is structured as follows: Sec-
tion II elaborates the background and related work. Section III
presents the proposed architecture of Protego. We evaluate
the hardware overhead and performance implications of this
implementation in Section IV. Finally, Section V concludes
this work.

II. BACKGROUND AND RELATED WORK

A. Trusted Execution Environments

Trusted Execution Environments (TEEs) provide secure
isolation of sensitive computing tasks [4]–[6]. Their key idea
is to reduce the trusted computing base (TCB) to an absolute
minimum, e.g., by excluding the underlying operating system
(OS) or hypervisor from the TCB. Not only software but also
external attackers and devices such as peripherals are supposed
to be restricted from accessing code and data inside the TEE
using dedicated hardware mechanisms.

On RISC-V, the Keystone framework [7] provides TEEs
using physical memory protection (PMP) [1]. Schneider et
al. have ported PMP and Keystone to CVA6, an open-source,



Interconnect

RISC-V
Core

PMP

Accelerator 
(e.g. DMA)

Protego

Off-chip interface
(e.g. Serial Link)

Protego

Main 
memory Peripherals

Fig. 1. Example illustration of a heterogeneous system equipped with Protego.

application-class, 64-bit RISC-V core [2], [8]. These additions
focus on systems where PMP-capable RISC-V cores are the
only bus masters. To protect systems with heterogeneous
interconnect masters in a similar fashion, PMP needs to be
extended to those non-compliant masters.

B. RISC-V IOPMP Proposal

Concurrently to this work, the RISC-V community has
drafted a first version for a RISC-V IOPMP specification [3],
[9]. The proposal designs the IOPMP unit to be placed on
the slave side of the memory interconnect, directly before
the protected slave. As a consequence, each master’s memory
requests are tagged with a source ID (SID).

In contrast, Protego is intended to be placed on the master
side of the interconnect, see Figure 1. This prevents illegal
memory accesses from entering the interconnect in the first
place, mitigating potential denial-of-service attacks by a ma-
licious AXI master.

An in-depth comparison of both architectures, including
their respective hardware implications, is an item for future
work.

III. ARCHITECTURE

Protego features a slave and a master AXI port, as well as a
configuration register interface. The slave AXI port connects
to an otherwise unprotected AXI master. The master AXI
port forwards allowed transactions to the downstream memory
system, e.g., by connecting to an AXI interconnect. The
configuration register interface is used for setting up the PMP
rules enforced by Protego.

A. Configuration

Protego’s configuration registers are adapted from the con-
ventional RISC-V PMP control and status registers (CSRs)
defined in the RISC-V privileged specification [1], which
defines a parametric number of entries. For each such IOPMP
entry x, there are two configuration registers as shown in
Figure 2:

51 0
iopmp_addrx addr[54:2]

52
7 5 6 3 4 2 1 0

iopmp_cfgx L reserved Mode X W R
1 2 2 1 1 1

Fig. 2. Protego’s configuration registers for entry x. Adapted from the RISC-V
PMP specification [1].

iopmp_addrx holds the base address (and size) of the
memory range that the corresponding IOPMP entry applies
to, right-shifted by two bits. The encoding corresponds to that
of pmpaddr in the RISC-V privileged specification [1].
iopmp_cfgx has five fields: The ‘R’, ‘W’, ‘X’ fields

define the read, write, and execute permissions, respectively.
‘Mode’ holds the IOPMP entry’s mode and can be set to
disabled (OFF, 0), top of range (TOR, 1), naturally aligned
four-byte region (NA4, 2, only selectable if the IOPMP’s
granularity is 4 bytes) and naturally aligned power-of-two
region (NAPOT, 3). These modes are detailed in the RISC-V
privileged specification [1]. Finally, ‘L’ can be set to lock the
IOPMP entry until the system is reset.

During startup, a trusted, privileged entity, such as a secure
monitor, can set up system-wide physical memory protection
by configuring all PMPs (RISC-V cores) and IOPMPs (other
system bus masters). This includes the address range of the
memory-mapped IOPMP configuration registers themselves to
ensure that the IOPMPs cannot be reconfigured by malicious
masters. The IOPMP configuration and locked PMP entries
become effective immediately, while non-locked PMP rules
only take effect after dropping into lower-privileged, untrusted
software.

B. Implementation

Internally, Protego features two PMP units that check the
legality of any read or write request against the PMP con-
figuration. Burst requests are checked for not exceeding a
single 4 KiB-aligned memory range, as demanded by the AXI
specification. If the checks pass, an AXI Demux [10] forwards
the request to the AXI master port of Protego. Otherwise, it
sends the request to an Error Slave, which returns an error
response over the AXI slave port to the AXI master.

IV. EVALUATION

A. Functional Evaluation

To evaluate the efficacy of our proposed unit, we instan-
tiate a system featuring two memory bus masters: a PMP-
equipped 64-bit RISC-V core (CVA6 [8] and a DMA engine
(iDMA [11]) protected by Protego. We execute a DMA attack
without and with IOPMP in place. The output of this program
is shown in Listing 1, indicating the following sequence of
events:

a) Lines 1-7: The test is initialized. A 4 KiB-aligned
source value is initialized to 0x2A, while a second 4 KiB-
aligned destination array is zeroed. The PMP and IOPMP are
probed.



Protego

Bound Check

PMP R

Error Slave

AXI Demux

AW

AR

A
X

I

PMP W

A
X

I

A
X

I

A
X

I

P
M

P
 C

o
n

fig

CFG

System Interconnect

Fig. 3. Protego architecture.

Listing 1
DMA ATTACK OUTPUT.

1 Hello CVA6 from iDMA!
2 Source array @ 0x0000000080FFE000
3 Destination array @ 0x0000000080FFD000
4 Detect PMP: PMP0 detected
5 PMP granularity: 00000008
6 IO-PMP0: detected
7 IO-PMP granularity: 00001000
8 iopmp_addr0: 003FFFFFFFFFFFFF
9 iopmp_cfg0: 000000000000001F

10 Test register read/write
11 Initiate dma request
12 Start transfer
13 transfer_id: 00000002
14 done_id: 00000002
15 dst[0]: 0000002A
16 Transfer finished
17 Try reading dst: 0x000000000000002A
18 Try reading dst: 0x000000000000002A
19 Transfer successfully validated.
20 Reset destination array.
21 IO-PMP: Lock src array.
22 iopmp_addr0: 00000000203FF9FF
23 iopmp_cfg0: 0000000000000018
24 Initiate dma request
25 Start transfer
26 transfer_id: 00000003
27 done_id: 00000003
28 dst[0]: 00000000
29 Transfer finished
30 Try reading dst: 0x0000000000000000
31 assertion failed: dst
32 Spin-loop.

b) Lines 8-9: Protego is configured to allow all accesses
(feed-through) by setting all bits of iopmp_addr0 (match
all), setting the mode of entry 0 to NAPOT and permitting
reads, writes, and execution.

c) Lines 10-19: iDMA is programmed to load the source
array into the destination array. The transfer succeeds, as the
destination now reads 0x2A.

d) Lines 20-23: The destination array is reset (zeroed),
and Protego is configured to disallow memory access to the
source array by setting iopmp_addr0 to the source array’s
address, right-shifted by two (the trailing ones indicate a 4 KiB

TABLE I
DEFAULT PARAMETERS OF PROTEGO USED FOR EVALUATION.

Parameter Value

AXI4 address width 64 bits
AXI4 data width 64 bits
AXI4 ID width 4 bits
AXI4 user width 1 bit
Inflight transactions 4
Number of IOPMP entries 16
IOPMP granularity 4 KiB

range), and by setting iopmp_cfg0.Mode to NAPOT and
clearing the read, write, and execute flags.

e) Lines 24-31: Once again, iDMA is programmed to
load from the source to the destination array. As expected, the
access fails this time, as the destination array still reads 0 after
the transfer.

Hence, we conclude that Protego is effective in protecting
the memory region of the source array. Steps to reproduce this
experiment, including its source code, are available online at
https://github.com/pulp-platform/axi-io-pmp.

B. Hardware Costs

To evaluate the hardware overhead of Protego, we synthe-
size the design in GLOBALFOUNDRIES 22FDX technology
in typical corners (0.8 V / 25 °C). We assume the default pa-
rameters for Protego as listed in Table I. We vary the clock
frequency between 500 MHz and 2 GHz. We constrain the I/O
delays to 30 % of the clock period.

Figure 4 shows the Area of the design constrained to
different clock period constraints and converted into kilo gate
equivalent (kGE). It ranges from approximately 36 kGE for a
500 MHz synthesis run up to 42 kGE at 2 GHz.

To study the contributions of the different sub-components
of Protego to the overall design area, we run synthesis with
cycle time constraint of 700 ps (1.4 GHz frequency) while pre-
serving the hierarchical module boundaries. The corresponding
area breakdown is shown in Figure 5. The main contributors
to Protego’s design area are the configuration registers and
the two PMP units, which occupy approximately 30 % of the
total design area, each. The remaining area is used by the AXI
Demux, the AXI error slave, and glue logic in the top level.

C. Performance Implications

To analyze Protego’s performance implications in terms of
cycle latency and throughput, we focus on the path between
the AXI master and slave ports. Most components on this
path, particularly the PMP units and the bound check, are
purely combinatorial, meaning that they process and propagate
beats within the same clock cycle. The AXI Demux [10]
contains sequential state to track in-flight transactions and
may stall when the selector changes while there are in-flight
transactions downstream to preserve ordering and comply with
the AXI4 protocol. In the case of Protego, such a stall may
occur after accessing an illegal memory address, which causes
the aforementioned switch of the AXI Demux select. We

https://github.com/pulp-platform/axi-io-pmp


500 1,000 1,500 2,000
34

36

38

40

42

Clock Period [ps]

A
re

a
[k
G
E

]

Fig. 4. Area versus timing of Protego.

31.9%

27.1%

28.9%

7.6%

2.2%
2.3% Control Register

Read PMP

Write PMP

AXI Demux

AXI Error Slave Other

Fig. 5. Hierarchical area breakdown of Protego at 1.4 GHz.

assume that in the common case, AXI masters generally access
permitted memory regions, meaning that the AXI Demux
maintains a direct feed-through connection between Protego’s
AXI master and slave ports. This implies a zero-cycle latency
overhead and full throughput as long as all accesses succeed.
If Protego lies on a critical path on a system level, it may be
desirable to add an AXI Cut [10] before or after the module.
This would prevent Protego from introducing timing violations
at additional hardware costs and an extra cycle of latency.

V. CONCLUSION

In this paper, we present Protego, a fully open-source, zero-
cycle latency IOPMP unit that enables physical memory pro-
tection in heterogeneous computing systems. We demonstrate
that Protego is capable of preventing DMA attacks that bypass
conventional PMPs while allowing for full throughput and
no added latency. Protego’s hardware overhead is small at
approximately 40 kGE, and it can be synthesized at up to
2 GHz in GLOBALFOUNDRIES 22FDX technology.

To the best of our knowledge, Protego is the first open-
source hardware implementation of an AXI-compliant IOPMP.
There is significant potential for further exploration, for in-
stance, by comparing Protego to the recently drafted RISC-V

IOPMP specification and the IOPMP architectures based on
it.

The source code of Protego is available online at https://
github.com/pulp-platform/axi-io-pmp.

REFERENCES

[1] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V
instruction set manual,” Volume II: Privileged Architecture, vol. 2, 2016.

[2] M. Schneider, A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Com-
posite enclaves: Towards disaggregated trusted execution,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems (TCHES),
vol. 2022, pp. 630–656, 2020.

[3] P. Ku, C. Tang, and RISC-V IOPMP Task Group,
“RISC-V IOPMP specification document,” 2023. [On-
line]. Available: https://github.com/riscv-admin/iopmp/blob/main/
specification/riscv iopmp specification.pdf

[4] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[5] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX Security Sympo-
sium, 2016.

[6] J. Winter, “Trusted computing building blocks for embedded Linux-
based ARM Trustzone platforms,” in Scalable Trusted Computing, 2008.

[7] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. X. Song,
“Keystone: an open framework for architecting trusted execution en-
vironments,” Proceedings of the Fifteenth European Conference on
Computer Systems, 2020.

[8] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-GHz 64-bit
RISC-V core in 22-nm FDSOI technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640,
2019.

[9] Y. Chen, H. Chen, S. Chen, C. Han, W. Ye, Y. Liu, and H. Zhou,
“DITES: A lightweight and flexible dual-core isolated trusted execution
soc based on RISC-V,” Sensors, vol. 22, no. 16, 2022.

[10] A. Kurth, W. Rönninger, T. Benz, M. Cavalcante, F. Schuiki, F. Zaruba,
and L. Benini, “An open-source platform for high-performance non-
coherent on-chip communication,” IEEE Transactions on Computers,
vol. 71, no. 8, pp. 1794–1809, 2022.

[11] T. Benz, M. Rogenmoser, P. Scheffler, S. Riedel, A. Ottaviano, A. Kurth,
T. Hoefler, and L. Benini, “A high-performance, energy-efficient modular
DMA engine architecture,” Unpublished, 2023.

https://github.com/pulp-platform/axi-io-pmp
https://github.com/pulp-platform/axi-io-pmp
https://github.com/riscv-admin/iopmp/blob/main/specification/riscv_iopmp_specification.pdf
https://github.com/riscv-admin/iopmp/blob/main/specification/riscv_iopmp_specification.pdf

	Introduction
	Background and Related Work
	Trusted Execution Environments
	RISC-V IOPMP Proposal

	Architecture
	Configuration
	Implementation

	Evaluation
	Functional Evaluation
	Hardware Costs
	Performance Implications

	Conclusion
	References

