
Trustworthy System-on-Chip by monitoring system
behavior at runtime

Martin Flasskamp, Christian Klarhorst, Jens Hagemeyer
Cognitronics & Sensor Systems

Bielefeld University
Bielefeld, Germany

{mflasskamp,cklarhor,jhagemey}@techfak.uni-bielefeld.de

Abstract—Electronic systems form the backbone of the digital
economy and therefore have an influence on many areas of peo-
ple’s work and lives. Exploring novel self-monitoring components
by combining known methods and machine learning, so that they
can assess their own trustworthiness is important. In this work,
a Trust Monitoring Unit for detecting abnormal SoC behavior is
proposed. The first two components to capture the SoC behavior
at runtime were implemented. The components were evaluated
on two FPGA based platforms and in software. The preliminary
results show that bus transactions characterize the SoC behavior.
In ongoing work captured behavior will be used by hand-crafted
and AI-based methods to generate rules that identify abnormal
behavior.

Index Terms—SoC, runtime monitoring, behavior-based trust

I. INTRODUCTION

Current microchips are complex systems composed of var-
ious interacting components. Ensuring that a microchip is
trustworthy requires guaranteeing that it operates according to
its specifications and is not compromised by hostile attacks
or unexpected errors. Trustworthiness can be strengthened
through monitoring, whereby the chip’s behavior is continu-
ously monitored to detect and respond to deviations. Complex
systems can be monitored through a variety of techniques,
such as by verifying behavioral patterns or by comparing to
valid system behavioral specifications. The precision of spec-
ifying valid system behavior is a crucial factor in monitoring
microchips, as it can ensure that deviations from a known
pattern can be detected. It is also important that methods for
detecting deviations provide appropriate measures for reacting
to these deviations.

In this work, we address the following attack scenar-
ios: 1) components compromised by a security vulnerability
in their implementation, 2) changes in the behavior of a
(purchased) IP component after production and 3) abnormal
behavior due to counterfeiting (e.g. less than the required
performance). The fundamental idea is that all of these attack
scenarios cause a change in the communication behavior on
the bus. Therefore, supervising the bus and checking the
different aspects of the communication is ideal for detecting

The project on which this report is based was funded by the German Federal
Ministry of Education and Research (BMBF) under the sponsor number
16ME0284. The responsibility for the content of this publication lies with
the author.

a broad range of attack scenarios. Those aspects include the
communication pattern (size of the accesses, frequency), the
order of the communicating bus participants and the current
status of the system (e.g. booting) during the bus activity. We
address this challenge by proposing a Trusted Monitoring Unit
(TMU) that monitors and secures the system state of an SoC
at runtime. In addition, a deeper understanding of the system
can be derived from the interaction of the IP components.

II. RELATED WORK

In recent years, several research efforts have focused on
developing techniques to improve the security and trustwor-
thiness of SoCs. The concept of a behaviour-based trust model
aims to determine the trustworthiness of an entity in a system
of cooperating entities by knowledge of previous interactions.
In [WB06] Weth and Böhm present a framework for behavior-
based trust models. They describe how to formulate behavior-
specific knowledge about an entity from previous interactions
and propose an algebra to formulate trust-policies. This algebra
can then be queried to evaluate the trustworthiness. In our
work, we plan to adapt this approach to SoCs. Entities in SoCs
like CPUs, memories or accelerators interact with each other
via communication infrastructure. Besides hand-crafted trust-
policies we’re working on methods to create AI-based policies.
Different approaches exist to improve the trustworthiness
inside an SoC. These include hardware-based monitoring of
the systems and software-based techniques such as run-time
verification. A noteworthy example for hardware-based moni-
toring are IP components developed by UltraSoC (acquired by
Siemens in 2020) included in their embedded analytics suite.
Another hardware-based approach are the extensions to the
bus fabric by the ARM TrustZone architecture[Nga+16]. ARM
provides the hardware logic to distinguish whether access to
a resource is coming from the ”secure” or ”normal” world.

III. IMPLEMENTATION OF THE TMU

The TMU consists of the components Probe, Monitor,
Detect and Respond. Its implementation is done in the migen
framework [Mig], a Python toolbox for building complex
digital hardware.

The Probe component captures the signals of interest from
the SoC. Possible sources are among others the SoC inter-
connect bus, built-in self-tests (BIST) or status signals from

mailto:mflasskamp@techfak.uni-bielefeld.de
mailto:cklarhor@techfak.uni-bielefeld.de
mailto:jhagemey@techfak.uni-bielefeld.de
https://www.cit-ec.de/en/ks
https://www.uni-bielefeld.de
mailto:mflasskamp@techfak.uni-bielefeld.de
mailto:cklarhor@techfak.uni-bielefeld.de
mailto:jhagemey@techfak.uni-bielefeld.de

RespondProbe Monitor Detect

Controller

Queue

Buffer

Classifier

Controller

Ruleset

Trigger

Controller

① So�ware

② FPGA

③ ASIC

Fig. 1. Architecture of the Trusted Monitoring Unit and coverage of its
components by the three planned demonstrator platforms.

IP components. To probe the SoC interconnect, various bus
control signals are captured depending on the particular bus
implementation. Our hardware demonstrator platforms (see
IV-A) support AHB and Wishbone buses. Internally the probe
component buffers the captured data.

The Monitor component combines the captured signals and
merges them to the SoC’s system behavior. Via a control input,
the component can be activated to start triggering on input
from the probe buffer. Incoming data is stored in a queue
for further processing on-chip or to be transferred off-chip.
To minimize resource usage, lossless compression methods
of bus transactions are implemented: Accesses to the same
or consecutive addresses are combined to an access group,
either for rising or falling access patterns. In addition, it is
planned to integrate sophisticated methods to identify more
complex access patterns. For bus transactions supplementary
metadata in addition to the bus control signals is added on-
chip: a transaction counter or parity information to ensure
data integrity (cf. Fig. 2 for wishbone bus). The recorded bus
communication can be transferred off-chip for further analysis.
That allows to extend the data-set by additional information
from the software build environment, e.g. the linker or memory
maps.

off-chip metadataon-chip metadatabus control signals

csr
map

parity
check

bus
region

bus
masters linker

map

Fig. 2. Additional metadata added to bus control signals on-chip and off-chip.

The Detect component is ongoing work and will be respon-
sible for observing the system state. A classifier processes
the system behavior from the monitor queue and outputs its
result. The decision from the classifier is either derived from
a predefined rule-set or the whole classifier is implemented by
machine learning methods. This rule-set has to be generated

in advance, hand-crafted using expert knowledge about the
hardware platform and the running application. Otherwise, the
rules can be determined by machine learning methods running
on training data created via simulation of a prototype.

The Respond component is planned to react on the classi-
fication done by the detect classifier. Depending on the target
platform, a valid reaction in case of a detected loss of trust in
the system state might be to enter a platform specific safe state
(for safety critical systems) or a reset of the whole system.

IV. ANALYSIS

Several demonstrator platforms of the TMU are imple-
mented in software and on an FPGA. An ASIC implementation
for specific TMU components is planned. Figure 1 depicts
the coverage of the TMU components in each demonstrator
platform. The platforms are used to capture data for the
upcoming development of the detect component.

A. Hardware Demonstrator Platform

The probe and monitor components are compatible with the
AIRISC Core Complex[Fra22] and the LiteX framework[Lit].
The current demonstrator platforms include a virtual proto-
type using LiteX and Verilator for training data and rule-
set generation, and two FPGA based platforms for evalua-
tion and demonstration purposes. One uses AIRISC with an
AHB bus on a Xilinx basys3 FPGA board, and the other
one LiteX with a wishbone bus on an AMiRo mini robot
platform[Her+16] with a Spartan6 FPGA shown in Figure 3.
The LiteX SoC framework allows the use of different RiscV
core implementations, as well as the integration of various IP
cores. The AMiRo SoC currently consists of a VexRiscv CPU
with 256 MByte RAM, a CAN controller, SD-Card, a camera
interface and the TMU monitor component. Furthermore, it
is planned to have a silicon-proven version of the monitor
component as part of an AIRISC tape out.

UART

RISC-V

DRAM

W
is
h
b
o
n
e

ROM TMU-
Monitor

Fig. 3. FPGA demonstrator AMiRo.

B. Preliminary Results

For the preliminary results, we focus on two example
programs, a small self-written example and CoreMark. Both
applications were executed on AIRISC while the data bus
was recorded with the help of the monitor component. The
recorded transactions were then transferred to the host com-
puter for further analysis. For each transaction, a total of 64 bit
metadata was generated consisting of a 32 bit address, 1bit
indicating whether the transaction was a read or write, 3 bit
recording the size of the transaction, an error bit to indicate

failed transactions and two 8 bit counter to encode the timing
behavior of the bus for the idle and busy states. Additionally,
11 bits were used for the compression algorithm.

The first test consists of a bubble sort algorithm, with
a uniform continuous access pattern, and an algorithm that
sums equally spaced elements, with a non-continuous accesses
pattern. The code listing of the second algorithm is shown
in Figure 4. The recorded transactions on the data bus for
the execution of both algorithms are shown in Figure 5.
The monitor component recorded a total of 30399 data bus

f o r (i n t i = 0 ; i < 100 ; i ++) {
c o u n t e r = (c o u n t e r + 43) % 2 5 ;
sum += a r r a y [c o u n t e r] ;

}

Fig. 4. Summing example that produces a non-continuous access pattern.

transactions (3 % of the accesses were writes). The transactions
were compressed inside the monitor by a factor of 13. Thus,
the total compressed record size is 4.7 kByte. Both algorithms
show different bus behavior and can therefore be distinguished
from each other.

The second program is EEMBC CoreMark[EEM] because
it consists of common algorithms found in other applications,
e.g. list processing and matrix manipulation. Figure 6 shows
the bus transactions while the CoreMark program was ex-
ecuted. The monitor component recorded a total of 52394
data bus transactions (5 % of the accesses were writes). The
compression factor was 9, with a total compressed record size
of 11.6 kByte. The different phases of the CoreMark program
can be seen in the figure because of their different access
behavior. The figure only shows the accesses to the memory
region of the SoC, although, there were also accesses to a
timer and the UART component.

Fig. 5. Bus transactions to the memory region on AIRISC running bubble
sort (left of the green line) and the summing example (right of the green line).

V. CONCLUSION

We implemented the probe and monitor components of the
TMU in Software and on FPGA. We’re able to capture the SoC
behavior while running various programs. The preliminary
results in section IV-B show that bus transactions form a

Fig. 6. Bus transactions to the memory region on AIRISC running CoreMark.

characteristic pattern in the address space depending on which
algorithm is executed on the CPU. In ongoing work these
patterns are used to derive a rule-set for detecting abnormal
behavior of a SoC in the detect component. Hand-crafted and
AI-based methods to generate the rule-set will be evaluated.

ACKNOWLEDGMENT

We thank Bjarne Wintermann for his support on implement-
ing the TMU component within his work as a student assistant.

REFERENCES

[WB06] Christian von der Weth and Klemens Böhm. “A
Unifying Framework for Behavior-Based Trust
Models”. In: Oct. 2006.

[Her+16] Stefan Herbrechtsmeier et al. “AMiRo: A modular
& customizable open-source mini robot platform”.
In: ICSTCC 2016. 2016.

[Nga+16] Bernard Ngabonziza et al. “TrustZone Explained:
Architectural Features and Use Cases”. In: 2016
IEEE 2nd International Conference on Collabora-
tion and Internet Computing (CIC). 2016.

[Fra22] Fraunhofer IMS. The Fraunhofer IMS AIRISC
RISC-V Processor. Version 1.1.0. Dec. 2022. URL:
https://github.com/Fraunhofer- IMS/airisc core
complex.

[EEM] EEMBC. Embedded Microprocessor Benchmark
Consortium. URL: https://www.eembc.org/.

[Lit] LiteX. SoC builder framework. URL: https : / /
github.com/enjoy-digital/litex.

[Mig] Migen. A Python-based tool that automates fur-
ther the VLSI design process. URL: https : / / m -
labs.hk/gateware/migen/.

mailto:bwintermann@techfak.uni-bielefeld.de
https://github.com/Fraunhofer-IMS/airisc_core_complex
https://github.com/Fraunhofer-IMS/airisc_core_complex
https://www.eembc.org/
https://github.com/enjoy-digital/litex
https://github.com/enjoy-digital/litex
https://m-labs.hk/gateware/migen/
https://m-labs.hk/gateware/migen/

	I Introduction
	II Related Work
	III Implementation of the TMU
	IV Analysis
	IV-A Hardware Demonstrator Platform
	IV-B Preliminary Results

	V Conclusion

